
8.1 Introduction
A large number of the files in a typical filesystem are text files. Text files contain simply text, no

formatting features that you might see in a word processing file.

Because there are so many of these files on a typical Linux system, a great number of commands

exist to help users manipulate text files. There are commands to both view and modify these files in

various ways.

In addition, there are features available for the shell to control the output of commands, so instead of

having the output placed in the terminal window, the output can be redirected into another file or

another command. These redirection features provide users with a much more flexible and powerful

environment to work within.

Searching and Extracting Data from Files

 Weight: 4

 Description: Search and extract from files in the home directory.

 Key Knowledge Areas:

 Command line pipes

 I/O re-direction

 Partial POSIX Regular Expressions (.,[],*,?)

 The following is a partial list of the used files, terms, and utilities:

 find

 grep

 less

 head, tail

 sort

 cut

 wc

 Thing that are nice to know:

 Partial POSIX Basic Regular Expressions ([^], ^, $)

 Partial POSIX Extended Regular Expressions (+,(),|)

 xargs

8.3 Command Line Pipes
Previous chapters discussed how to use individual commands to perform actions on the operating

system, including how to create/move/delete files and move around the system. Typically, when a

command has output or generates an error, the output is displayed to the screen; however, this does

not have to be the case.

The pipe (|) character can be used to send the output of one command to another. Instead of being

printed to the screen, the output of one command becomes input for the next command. This can be

a powerful tool, especially when looking for specific data; piping is often used to refine the results of

an initial command.

The head and tail commands will be used in many examples below to illustrate the use of pipes.

These commands can be used to display only the first few or last few lines of a file (or, when used

with a pipe, the output of a previous command).

By default the head and tail commands will display ten lines. For example, the following command

will display the first ten lines of the /etc/sysctl.conf file:

In the next example, the last ten lines of the file will be displayed:

The pipe character will allow users to utilize these commands not only on files, but on the output of

other commands. This can be useful when listing a large directory, for example the /etc directory:

If you look at the output of the previous command, you will note that first filename is fstab. But

there are other files listed "above" that can only be viewed if the user uses the scroll bar. What if you

just wanted to list the first few files of the /etc directory?

Instead of displaying the full output of the above command, piping it to the head command will

display only the first ten lines:

The full output of the ls command is passed to the head command by the shell instead of being

printed to the screen. The head command takes this output (from ls) as "input data" and the output

of head is then printed to the screen.

Multiple pipes can be used consecutively to link multiple commands together. If three commands are

piped together, the first command's output is passed to the second command. The output of the

second command is then passed to the third command. The output of the third command would then

be printed to the screen.

It is important to carefully choose the order in which commands are piped, as the third command will

only see input from the output of the second. The examples below illustrate this using the nl

command. In the first example, the nl command is used to number the lines of the output of a

previous command:

In the next example, note that the ls command is executed first and its output is sent to the nl

command, numbering all of the lines from the output of the ls command. Then the tail command

is executed, displaying the last five lines from the output of the nl command:

Compare the output above with the next example:

Notice how the line numbers are different. Why is this?

In the second example, the output of the ls command is first sent to the tail command which

"grabs" only the last five lines of the output. Then the tail command sends those five lines to

the nl command, which numbers them 1-5.

Pipes can be powerful, but it is important to consider how commands are piped to ensure that the

desired output is displayed.

8.4 I/O Redirection
Input/Output (I/O) redirection allows for command line information to be passed to different streams.

Before discussing redirection, it is important to understand standard streams.

8.4.1 STDIN
Standard input, or STDIN, is information entered normally by the user via the keyboard. When a

command prompts the shell for data, the shell provides the user with the ability to type commands

that, in turn, are sent to the command as STDIN.

8.4.2 STDOUT
Standard output, or STDOUT, is the normal output of commands. When a command functions

correctly (without errors) the output it produces is called STDOUT. By default, STDOUT is displayed

in the terminal window (screen) where the command is executing.

8.4.3 STDERR
Standard error, or STDERR, are error messages generated by commands. By default, STDERR is

displayed in the terminal window (screen) where the command is executing.

I/O redirection allows the user to redirect STDIN so data comes from a file and STDOUT/STDERR

so output goes to a file. Redirection is achieved by using the arrow characters: (<) and (>).

8.4.4 Redirecting STDOUT

STDOUT can be directed to files. To begin, observe the output of the following command which will

display to the screen:

Using the > character the output can be redirected to a file:

This command displays no output, because STDOUT was sent to the file example.txt instead of

the screen. You can see the new file with the output of the ls command. The newly-created file

contains the output of the echo command when the file is viewed with the cat command.

It is important to realize that the single arrow will overwrite any contents of an existing file:

The original contents of the file are gone, replaced with the output of the new echo command.

It is also possible to preserve the contents of an existing file by appending to it. Use "double arrow" (

>>) to append to a file instead of overwriting it:

Instead of being overwritten, the output of the most recent echo command is added to the bottom of

the file.

8.4.5 Redirecting STDERR
STDERR can be redirected in a similar fashion to STDOUT. STDOUT is also known

as stream (orchannel) #1. STDERR is assigned stream #2.

When using arrows to redirect, stream #1 is assumed unless another stream is specified. Thus,

stream #2 must be specified when redirecting STDERR.

To demonstrate redirecting STDERR, first observe the following command which will produce an

error because the specified directory does not exist:

Note that there is nothing in the example above that implies that the output is STDERR. The output

is clearly an error message, but how could you tell that it is being sent to STDERR? One easy way

to determine this is to redirect STDOUT:

In the example above, STDOUT was redirected to the output.txt file. So, the output that is

displayed can't be STDOUT because it would have been placed in the output.txt file. Because all

command output goes either to STDOUT or STDERR, the output displayed above must be

STDERR.

The STDERR output of a command can be sent to a file:

In the command above, the 2> indicates that all error messages should be sent to the file

error.txt.

8.4.6 Redirecting Multiple Streams
It is possible to direct both the STDOUT and STDERR of a command at the same time. The

following command will produce both STDOUT and STDERR because one of the specified

directories exists and the other does not:

If only the STDOUT is sent to a file, STDERR will still be printed to the screen:

If only the STDERR is sent to a file, STDOUT will still be printed to the screen:

Both STDOUT and STDERR can be sent to a file by using &>, a character set that means "both 1>

and 2>":

Note that when you use &>, the output appears in the file with all of the STDERR messages at the

top and all of the STDOUT messages below all STDERR messages:

If you don't want STDERR and STDOUT to both go to the same file, they can be redirected to

different files by using both > and 2>. For example:

The order the streams are specified in does not matter.

8.4.7 Redirecting STDIN
The concept of redirecting STDIN is a difficult one because it is more difficult to understand whyyou

would want to redirect STDIN. With STDOUT and STDERR, the answer to why is fairly easy:

because sometimes you want to store the output into a file for future use.

Most Linux users end up redirecting STDOUT routinely, STDERR on occasion and STDIN...well,

very rarely. There are very few commands that require you to redirect STDIN because with most

commands if you want to read data from a file into a command, you can just specify the filename as

an argument to the command. The command will then look into the file.

For some commands, if you don't specify a filename as an argument, they will revert to using STDIN

to get data. For example, consider the following cat command:

In the example above, the cat command wasn't provided a filename as an argument. So, it asked

for the data to display on the screen from SDTIN. The user typed "hello" and then the cat

command displayed "hello" on the screen. Perhaps this is useful for lonely people, but not really a

good use of the cat command.

However, perhaps if the output of the cat command were redirected to a file, then this method could

be used either to add to an existing file or to place text into a new file:

While the previous example demonstrates another advantage of redirecting STDOUT, it doesn't

address why or how STDIN can be directed. To understand this, first consider a new command

called tr. This command will take a set of characters and translate them into another set of

characters.

For example, suppose you wanted to capitalize a line of text. You could use the tr command as

follows:

The tr command took the STDIN from the keyboard ("watch how this works") and converted all

lower case letters before sending STDOUT to the screen ("WATCH HOW THIS WORKS").

It would seem that a better use of the tr command would be to perform translation on a file, not

keyboard input. However, the tr command does not support filename arguments:

You can, however, tell the shell to get STDIN from a file instead of from the keyboard by using the <

character:

This is fairly rare because most commands do accept filenames as arguments. But, for those that do

not, this method could be used to have the shell read from the file instead of relying on the command

to have this ability.

One last note: In most cases you probably want to take the resulting output and place it back into

another file:

8.5 Searching for Files Using the Find Command
One of the challenges that users face when working with the filesystem, is trying to recall the

location where files are stored. There are thousands of files and hundreds of directories on a typical

Linux filesystem, so recalling where these files are located can pose challenges.

Keep in mind that most of the files that you will work with are ones that you create. As a result, you

often will be looking in your own home directory to find files. However, sometimes you may need to

search in other places on the filesystem to find files created by other users.

The find command is a very powerful tool that you can use to search for files on the filesystem.

This command can search for files by name, including using wildcard characters for when you are

not certain of the exact filename. Additionally, you can search for files based on file metadata, such

as file type, file size and file ownership.

The syntax of the find command is:

find [starting directory] [search option] [search criteria] [result option]

A description of all of these components:

Component Description

[starting directory] This is where the user specifies where to start searching. The find command

will search this directory and all of its subdirectories. If no starting directory is

Component Description

provided, then the current directory is used for the starting point.

[search option] This is where the user specifies an option to determine what sort of metadata

to search for; there are options for file name, file size and many other file

attributes.

[search criteria] This is an argument that compliments the search option. For example, if the

user uses the option to search for a file name, the search criteria would be the

filename.

[result option] This option is used to specify what action should be taken once the file is found.

If no option is provided, the file name will be printed to STDOUT.

8.5.1 Search by File Name
To search for a file by name, use the -name option to the find command:

Note that two files were found: /etc/hosts and /etc/avahi/hosts. The rest of the output was

STDERR messages because the user who ran the command didn't have the permission to access

certain subdirectories.

Recall that you can redirect STDERR to a file so you don't need to see these error messages on the

screen:

While the output is easier to read, there really is no purpose to storing the error messages in the

error.txt file. The developers of Linux realized that it would be good to have a "junk file" to send

unnecessary data; any file that you send to the /dev/null file is discarded:

8.5.2 Displaying File Detail
It can be useful to obtain file details when using the find command because just the file name itself

might not be enough information for you to find the correct file.

For example, there might be seven files named hosts; if you knew that the host file that you needed

had been modified recently, then the modification timestamp of the file would be useful to see.

To see these file details, use the -ls option to the find command:

The first two columns of the output above are the inode number of the file and the number of

blocks that the file is using for storage. Both of these are beyond the scope of the topic at hand. The

rest of the columns are typical output of the ls -l command: file type, permissions, hard link count,

user owner, group owner, file size, modification timestamp and file name.

8.5.3 Searching for Files by Size
One of the many useful searching options is the option that allows you to search for files by size.

The -size option allows you to search for files that are either larger than or smaller then a specified

size as well as search for an exact file size.

When you specify a file size, you can give the size in bytes (c), kilobytes (k), megabytes (M) or

gigabytes (G). For example, the following will search for files in the /etc directory structure that are

exactly 10 bytes large:

If you want to search for files that are larger than a specified size, you place a + character before the

size. For example, the following will look for all files in the /usr directory structure that are over 100

megabytes in size:

To search for files that are smaller than a specified size, place a - character before the file size.

8.5.4 Additional Useful Search Options

There are many search options. The following table illustrates a few of these options:

Option Meaning

-

maxdepth

Allows the user to specify how deep in the directory structure to search. For example, -

maxdepth 1 would mean only search the specified directory and its immediate

subdirectories.

-group Returns files owned by a specified group. For example, -group payroll would return files

owned by the payroll group.

-iname Returns files that match specified filename, but unlike -name, -iname is case insensitive.

For example, -iname hosts would match files named hosts, Hosts, HOSTS, etc.

-mmin Returns files that were modified based on modification time in minutes. For example, -

mmin 10 would match files that were modified 10 minutes ago.

-type Returns files that match file type. For example, -type f would return files that are regular

files.

-user Returns files owned by a specified user. For example, -user bob would return files

owned by the bob user.

8.5.5 Using Multiple Options
If you use multiple options, they act as an "and", meaning for a match to occur, all of the criteria must

match, not just one. For example, the following command will display all files in the /etc directory

structure that are 10 bytes in size and are plain files:

8.6 Viewing Files Using the less Command
While viewing small files with the cat command poses no problems, it is not an ideal choice for large

files. The cat command doesn't provide any way to easily pause and restart the display, so the

entire file contents are dumped to the screen.

For larger files, you will want to use a pager command to view the contents. Pager commands will

display one page of data at a time, allowing you to move forward and backwards in the file by using

movement keys.

There are two commonly used pager commands:

 The less command: This command provides a very advanced paging capability. It is

normally the default pager used by commands like the man command.

 The more command: This command has been around since the early days of UNIX. While it

has fewer features than the less command, it does have one important advantage: The

less command isn't always included with all Linux distributions (and on some distributions, it

isn't installed by default). The more command is always available.

When you use the more or less commands, they will allow you to "move around" a document by

using keystroke commands. Because the developers of the less command based the command

from the functionality of the more command, all of the keystroke commands available in

themore command also work in the less command.

For the purpose of this manual, the focus will be on the more advanced command (less).

Themore command is still useful to remember for times when the less command isn't available.

Remember that most of the keystroke commands provided work for both commands.

8.6.1 Help Screen in less
When you view a file with the less command, you can use the h key to display a help screen. The

help screen allows you to see which other commands are available. In the following example,

the less /usr/share/dict/words command is executed. Once the document is displayed,

theh key was pressed, displaying the help screen:

8.6.2 less Movement Commands
There are many movement commands for the less command, each with multiple possible keys or

key combinations. While this may seem intimidating, remember you don't need to memorize all of

these movement commands; you can always use the h key whenever you need to get help.

The first group of movement commands that you may want to focus upon are the ones that are most

commonly used. To make this even easier to learn, the keys that are identical in more and less will

be summarized. In this way, you will be learning how to move in more and less at the same time:

Movement Key

Window forward Spacebar

Window backward b

Movement Key

Line forward Enter

Exit q

Help h

When simply using less as a pager, the easiest way to advance forward a page is to press the

spacebar.

8.6.3 less Searching Commands
There are two ways to search in the less command: you can either search forward or backwards

from your current position using patterns called regular expressions. More details regarding regular

expressions are provided later in this chapter.

To start a search to look forward from your current position, use the / key. Then, type the text or

pattern to match and press the Enter key.

If a match can be found, then your cursor will move in the document to the match. For example, in

the following graphic the expression "frog" was searched for in the /usr/share/dict/words file:

Notice that "frog" didn't have to be a word by itself. Also notice that while the less command took

you to the first match from the current position, all matches were highlighted.

If no matches forward from your current position can be found, then the last line of the screen will

report "Pattern not found":

To start a search to look backwards from your current position, press the ? key, then type the text or

pattern to match and press the Enter key. Your cursor will move backward to the first match it can

find or report that the pattern cannot be found.

If more than one match can be found by a search, then using the n key will allow you to move to the

next match and using the N key will allow you to go to a previous match.

8.7 Revisiting the head and tail Commands
Recall that the head and tail commands are used to filter files to show a limited number of lines. If

you want to view a select number of lines from the top of the file, you use the head command and if

you want to view a select number of lines at the bottom of a file, then you use the tail command.

By default, both commands display ten lines from the file. The following table provides some

examples:

Command Example Explanation of Displayed Text

head /etc/passwd First ten lines of /etc/passwd

head -3 /etc/group First three lines of /etc/group

head -n 3 /etc/group First three lines of /etc/group

help | head First ten lines of output piped from the help command

tail /etc/group Last ten lines of /etc/group

tail -5 /etc/passwd Last five lines of /etc/passwd

tail -n 5 /etc/passwd Last five lines of /etc/passwd

help | tail Last ten lines of output piped from the help command

As seen from the above examples, both commands will output text from either a regular file or from

the output of any command sent through a pipe. They both use the -n option to indicate how many

lines to output.

8.7.1 Negative Value with the -n Option
Traditionally in UNIX, the number of lines to output would be specified as an option with either

command, so -3 meant show three lines. For the tail command, either -3 or -n -3 still means

show three lines. However, the GNU version of the head command recognizes -n -3 as show all

but the first three lines, and yet the head command still recognizes the option -3 as show the first

three lines.

8.7.2 Positive Value With the tail Command

The GNU version of the tail command allows for a variation of how to specify the number of lines

to be printed. If you use the -n option with a number prefixed by the plus sign, then the

tail command recognizes this to mean to display the contents starting at the specified line and

continuing all the way to the end.

For example, the following will display line #22 to the end of the output of the nl command:

8.7.3 Following Changes to a File
You can view live file changes by using the -f option to the tail command. This is useful when you

want to see changes to a file as they are happening.

A good example of this would be when viewing log files as a system administrator. Log files can be

used to troubleshoot problems and administrators will often view them "interactively" with the tail

command as they are performing the commands they are trying to troubleshoot in a separate

window.

For example, if you were to log in as the root user, you could troubleshoot issues with the email

server by viewing live changes to its log file with the following command: tail -f

/var/log/mail.log

8.8 Sorting Files or Input
The sort command can be used to rearrange the lines of files or input in either dictionary or

numeric order based upon the contents of one or more fields. Fields are determined by a field

separator contained on each line, which defaults to whitespace (spaces and tabs).

The following example creates a small file, using the head command to grab the first 5 lines of

the/etc/passwd file and send the output to a file called mypasswd.

Now we will sort the mypasswd file:

8.8.1 Fields and Sort Options
In the event that the file or input might be separated by another delimiter like a comma or colon,

the -t option will allow for another field separator to be specified. To specify fields to sort by, use

the -k option with an argument to indicate the field number (starting with 1 for the first field).

The other commonly used options for the sort command are the -n to perform a numeric sort and -

r to perform a reverse sort.

In the next example, the -t option is used to separate fields by a colon character and performs a

numeric sort using the third field of each line:

Note that the -r option could have been used to reverse the sort, making the higher numbers in the

third field appear at the top of the output:

Lastly, you may want to perform more complex sorts, such as sort by a primary field and then by a

secondary field. For example, consider the following data:

bob:smith:23

nick:jones:56

sue:smith:67

You might want to sort first by the last name (field #2) and then first name (field #1) and then by age

(field #3). This can be done with the following command:

sort -t: -k2 -k1 -k3n filename

8.9 Viewing File Statistics With the wc Command
The wc command allows for up to three statistics to be printed for each file provided, as well as the

total of these statistics if more than one filename is provided. By default, the wc command provides

the number of lines, words and bytes (1 byte = 1 character in a text file):

The above example shows the output from executing: wc /etc/passwd /etc/passwd-. The

output has four columns: number of lines in the file, number of words in the file, number of bytes in

the file and the file name or "total".

If you are interested in viewing just specific statistics, then you can use -l to show just the number

of lines, -w to show just the number of words and -c to show just the number of bytes.

The wc command can be useful for counting the number of lines output by some other command

through a pipe. For example, if you wanted to know the total number of files in the /etc directory,

you could execute ls /etc | wc -l:

8.10 Using the cut Command to Filter File

Contents
The cut command can extract columns of text from a file or standard input. A primary use of the

cut command is for working with delimited database files. These files are very common on Linux

systems.

By default, it considers its input to be separated by the Tab character, but the -d option can specify

alternative delimiters such as the colon or comma.

Using the -f option, you can specify which fields to display, either as a hyphenated range or a

comma separated list.

In the following example, the first, fifth, sixth and seventh fields from mypasswd database file are

displayed:

Using the cut command, you can also extract columns of text based upon character position with

the -c option. This can be useful for extracting fields from fixed-width database files. For example,

the following will display just the file type (character #1), permissions (characters #2-10) and

filename (characters #50+) of the output of the ls -l command:

8.11 Using the grep Command to Filter File

Contents
The grep command can be used to filter lines in a file or the output of another command based on

matching a pattern. That pattern can be as simple as the exact text that you want to match or it can

be much more advanced through the use of regular expressions (discussed later in this chapter).

For example, you may want to find all the users who can login to the system with the BASH shell, so

you could use the grep command to filter the lines from the /etc/passwd file for the lines

containing the characters "bash":

To make it easier to see what exactly is matched, use the --color option. This option will highlight

the matched items in red:

In some cases you don't care about the specific lines that match the pattern, but rather how many

lines match the pattern. With the -c option, you can get a count of how many lines that match:

When you are viewing the output from the grep command, it can be hard to determine the original

line numbers. This information can be useful when you go back into the file (perhaps to edit the file)

as you can use this information to quickly find one of the matched lines.

The -n option to the grep command will display original line numbers:

Some additional useful grep options:

Examples Output

grep -v nologin

/etc/passwd

All lines not containing "nologin" in the /etc/passwd file

grep -l linux /etc/* List of files in the /etc directory containing "linux"

grep -i linux /etc/* Listing of lines from files in the /etc directory containing any case (capital or

lower) of the character pattern "linux"

grep -w linux /etc/* Listing of lines from files in the /etc directory containing the word pattern

"linux"

8.12 Basic Regular Expressions

A Regular Expression is a collection of "normal" and "special" characters that are used to match

simple or complex patterns. Normal characters are alphanumeric characters which match

themselves. For example, an "a" would match an "a".

Some characters have special meanings when used within patterns by commands like the grep

command. There are both Basic Regular Expressions (available to a wide variety of Linux

commands) and Extended Regular Expressions (available to more advanced Linux commands).

Basic Regular Expressions include the following:

Regular Expression Matches

. Any single character

[] A list or range of characters to match one character, unless the first character is

the caret "^", and then it means any character not in the list

* Previous character repeated zero or more times

^ Following text must appear at beginning of line

$ Preceding text must appear at the end of the line

The grep command is just one of many commands that support regular expressions. Some other

commands include the more and less commands. While some of the regular expressions are

unnecessarily quoted with single quotes, it is a good practice to use single quotes around your

regular expressions to prevent the shell from trying to interpret special meaning from them.

8.12.1 Basic Regular Expressions - the . Character
In the example below, a simple file is first created using redirection. Then the grep command is

used to demonstrate a simple pattern match:

In the previous example, you can see that the pattern "a.." matched "abc". The first . character

matched the "b" and the second matched the "c".

In the next example, the pattern "a..c" won't match anything, so the grep command will not product

any output. For the match to be successful, there would need to be two characters between the "a"

and the "c":

8.12.2 Basic Regular Expressions - the []

Characters
If you use the . character, then any possible character could match. In some cases you want to

specify exactly which characters you want to match. For example, maybe you just want to match a

lower-case alpha character or a number character. For this, you can use the [] Regular Expression

characters and specify the valid characters inside the [] characters.

For example, the following command matches two characters, the first is either an "a" or a "b" while

the second is either an "a", "b", "c" or "d":

Note that you can either list out each possible character ([abcd]) or provide a range ([a-d]) as long

as the range is in the correct order. For example, [d-a] wouldn't work because it isn't a valid range:

The range is specified by a standard called the ASCII table. This table is a collection of all printable

characters in a specific order. You can see the ASCII table with the man ascii command. A small

example:

Since "a" has a smaller numeric value (141) then "d" (144), the range a-d includes all characters

from "a" to "d".

What if you want to match a character that can be anything but an "x", "y" or "z"? You wouldn't want

to have to provide a [] set with all of the characters except "x", "y" or "z".

To indicate that you want to match a character that is not one of the listed characters, start your []

set with a ^ symbol. For example, the following will demonstrate matching a pattern that includes a

character that isn't an "a", "b" or "c" followed by a "d":

8.12.3 Basic Regular Expressions - the * Character
The * character can be used to match "zero or more of the previous character". For example, the

following will match zero or more "d" characters:

8.12.4 Basic Regular Expressions - the ^ and $

Characters
When you perform a pattern match, the match could occur anywhere on the line. You may want to

specify that the match occurs at the beginning of the line or the end of the line. To match at the

beginning of the line, begin the pattern with a ^ symbol.

In the following example, another line is added to the example.txt file to demonstrate the use of the ^

symbol:

Note that in the first grep output, both lines match because they both contain the letter "a". In the

second grep output, only the line that began with the letter "a" matched.

In order to specify the match occurs at the end of line, end the pattern with the $ character. For

example, in order to only find lines which end with the letter "c":

8.12.5 Basic Regular Expressions - the \ Character
In some cases you may want to match a character that happens to be a special Regular Expression

character. For example, consider the following:

In the output of the grep command above, you will see that every line matches because you are

looking for a 'c' character followed by zero or more 'd' characters". If you want to look for an actual *

character, place a \ character before the * character:

8.13 Extended Regular Expressions
The use of Extended Regular Expressions often requires a special option be provided to the

command to recognize them. Historically, there is a command called egrep, which is similar to grep,

but is able to understand their usage. Now, the egrep command is deprecated in favor of using grep

with the -E option.

The following regular expressions are considered "extended":

RE Meaning

? Matches previous character zero or one time, so it is an optional character

+ Matches previous character repeated one or more times

| Alternation or like a logical or operator

Some extended regular expressions examples:

Command Meaning Matches

grep -E 'colou?r' 2.txt Match 'colo' following by zero or one 'u' character color colour

grep -E 'd+' 2.txt Match one or more 'd' characters d dd ddd dddd

grep -E 'gray|grey' 2.txt Match either 'gray' or 'grey' gray grey

8.14 xargs Command

If you receive an error about an argument list being too long when trying to execute a command,

then it's probably time to think about using xargs with that command. The xargs command also has

a useful option -0 that helps to eliminate problems with files that have spaces or tabs in their names.

The xargs command is useful for allowing commands to be executed more efficiently. Its goal is to

build the command line for a command to execute as few as times as possible with as many

arguments as possible, rather than to execute the command many times with one argument each

time.

The following example shows a scenario where the xargs command allowed for many files to be

removed, where using a normal wildcard (glob) character failed:

