
15.1 Introduction
File ownership is critical for file security. Every file has a user owner and a group owner.

This chapter will focus on how to specify the user and group ownership of a file. In addition, the

concept of file and directory permissions will be explored, including how to change the permissions

on files and directories. Default permissions are the permissions given to files and directories when

they are initially created.

15.2 Linux Essentials Exam Objectives
This chapter will cover the topics for the following Linux Essentials exam objectives:

Topic 5: Security and File Permissions (weight: 7)

 5.3: Managing File Permissions and Ownership

 Weight: 2

 Description: Understanding and manipulating file permissions and ownership

settings.

 Key Knowledge Areas:

 File/directory permissions and owners

 The following is a partial list of the used files, terms, and utilities:

 ls -l

 chmod, chown

 Things that are nice to know

 chgrp

15.3 File Ownership
By default, users will own the files that they create. While this ownership can be changed, this

function requires administrative privileges. Although, most commands will usually show the user

owner as a name, the operating system is actually associating the user ownership with the UID for

that user name.

Every file also has a group owner. In the previous chapter on creating users and groups, the user's

primary group was discussed. By default, the primary group of the user who creates the file will be

the group owner of any new files. Users are allowed to change the group owner of a file to any group

that they belong. Similar to user ownership, the association of a file with a group is not actually done

internally by the operating system by name, but by the GID of the group.

Since ownership is actually determined by the UID and GID associated with a file, changing the UID

of a user (or deleting the user) has the effect of making a file that was originally owned by that user

have no real user owner. When there is no UID in the /etc/passwd file that matches the UID of the

owner of the file, then the UID (the number) will be displayed as the user owner of the file instead of

the user name (which no longer exists). The same occurs for groups.

The id command can be useful for verifying which user account you are using and which groups

you have available to use. By viewing the output of this command, you can see the user's identity

information expressed both as a number and as a name.

The output of the id command displays the UID and user account name of the current user followed

by the GID and group name of the primary group and the GIDs and group names of all group

memberships:

[sysadmin@localhost ~]$ id

uid=500(sysadmin) gid=500(sysadmin) groups=500(sysadmin),10001(research),10002(develo
pment) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

The above example shows the user has a UID of 500 for the user account sysadmin. It shows the

primary group for this user has a GID of 500 for the group sysadmin.

Because the user account and primary group account have the same numeric identifier and same

name, this indicates that this user is in a User Private Group (UPG). In addition, the user belongs to

two supplemental groups: the research group with a GID of 10001 and the development group with a

GID of 10002.

When a file is created it will belong to the current user and their current primary group. If the user

from the above example were to execute a command like touch to create a file and then view the

file details, the output would look like the following:

[sysadmin@localhost ~]$ touch /tmp/filetest1

[sysadmin@localhost ~]$ ls -l /tmp/filetest1

-rw-rw-r--. 1 sysadmin sysadmin 0 Oct 21 10:18 /tmp/filetest1

The user owner of the file is sysadmin and the group owner sysadmin.

15.4 newgrp and groups Commands
If you know that the file you are about to create should belong to a group different from your current

primary group, then you can use the newgrp command to change your current primary group.

As shown previously, the id command will list your identity information, including your group

memberships. If you are only interested in knowing what groups you belong to, then you can

execute the groups command:

[sysadmin@localhost ~]$ groups

sysadmin research development

The groups output may not be as detailed as the output of the id command, but if all you need to

know is what groups you can switch to by using the newgrp command, then the groupscommand

provides the information that you need. The id command output does show your current primary

group, so it is useful for verifying that the newgrp command succeeded.

For example, if the "sysadmin" user was planning on having a file owned by the group "research",

but that wasn't the user's primary group, then the user could use the newgrp command and then

verify the correct primary group with the id command before creating the new file:

[sysadmin@localhost ~]$ id

uid=502(sysadmin) gid=503(sysadmin) groups=503(sysadmin),10001(research),10002(develo
pment) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

[sysadmin@localhost ~]$ newgrp research

[sysadmin@localhost ~]$ id

uid=502(sysadmin) gid=10001(research) groups=503(sysadmin),10001(research),10002(deve
lopment) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

From the output of the previous commands, you see initially the user's GID is 503 for the sysadmin

user, then the newgrp research command is executed, and then the user's primary GID is 10001,

the research group. After these commands were executed, if the user was to create another file and

view its details, the new file would be owned by the research group:

[sysadmin@localhost ~]$ touch /tmp/filetest2

[sysadmin@localhost ~]$ ls -l /tmp/filetest2

-rw-r--r--. 1 sysadmin research 0 Oct 21 10:53 /tmp/filetest2

The newgrp command opens a new shell; as long as the user stays in that shell, the primary group

won't change. To switch the primary group back to the original, the user could leave the new shell by

running the exit command. For example:

[sysadmin@localhost ~]$ id

uid=502(sysadmin) gid=10001(research) groups=503(sysadmin),10001(research),10002(deve
lopment) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

[sysadmin@localhost ~]$ exit

exit

[sysadmin@localhost ~]$ id

uid=502(sysadmin) gid=503(sysadmin) groups=503(sysadmin),10001(research),10002(develo
pment) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Administrative privileges are required in order to permanently change the primary group of the user.

The root user would execute the usermod -g groupname username command.

15.5 chgrp and stat Commands
If you need to change the group ownership of an existing file, then you can use the chgrpcommand.

As a user without administrative privileges, the chgrp command can only be used to change the

group owner of the file to a group that the user is already a member. As the root user,

the chgrp command can be used to change the group owner of any file to any group.

While you can view the ownership of a file with the -l option to the ls command, the system

provides another command that is useful when viewing ownership and file permissions: the stat

command. The stat command displays more detailed information about a file, including providing the

group ownership both by group name and GID number:

[sysadmin@localhost ~]$ stat /tmp/filetest1

 File: `/tmp/filetest1'

 Size: 0 Blocks: 0 IO Block: 4096 regular empty file

Device: fd00h/64768d Inode: 31477 Links: 1

Access: (0664/-rw-rw-r--) Uid: (502/sysadmin) Gid: (503/sysadmin)

Access: 2013-10-21 10:18:02.809118163 -0700

Modify: 2013-10-21 10:18:02.809118163 -0700

Change: 2013-10-21 10:18:02.809118163 -0700

The stat command will also be useful later in this chapter when file permissions are covered, as it

provides more detail than the ls -l command provides.

The following graphic illustrates the sysadmin user changing the group ownership of a file that the

user owns:

If a user attempts to modify the group ownership of a file that the user doesn't own, they will receive

an error message:

[sysadmin@localhost ~]$ chgrp development /etc/passwd

chgrp: changing group of '/etc/passwd': Operation not permitted

Sometimes you want to be able to not only change the files in your current directory, but also the

files in sub-directories. When executed with the -R (recursive) option, the chgrp command will

operate not only on the current directory, but all directories that may be nested underneath the

specified directory. The operation will also affect all files in the subdirectories, not just the directories

themselves.

The following graphic illustrates the use of the -R option:

15.6 chown Command
The chown command allows the root user to change the user ownership of files and directories. A

regular user cannot use this command to change the user owner of a file, even to give the ownership

of one of their own files to another user. However, the chown command also permits changing group

ownership, which can be accomplished by either root or the owner of the file.

There are three different ways the chown command can be executed. The first method is used to

change just the user owner of the file. For example, if the root user wanted to change the user

ownership of the abc.txt file to the user "ted", then the following command could be executed:

[root@localhost ~]# chown ted abc.txt

The second method is to change both the user and the group; this also requires root privileges. To

accomplish this, you separate the user and group by either a colon or a period character. For

example:

[root@localhost ~]# chown user:group /path/to/file

[root@localhost ~]# chown user.group /path/to/file

If a user doesn't have root privileges, they can use the third method to change the group owner of a

file just like the chgrp command. To use chown to only change the group ownership of the file, use a

colon or a period as a prefix to the group name:

[root@localhost ~]# chown :group /path/to/file

[root@localhost ~]# chown .group /path/to/file

15.7 Permissions
When you execute the ls -l command, the resulting output displays ten characters at the

beginning of each line, which indicate the type of file and the permissions of the file:

 The first character indicates the file type.

 Characters 2-4 indicate the permissions for the user that owns the file.

 Characters 5-7 indicate the permissions for the group that owns the file.

 Characters 8-10 indicate the permissions for "others" or what is sometimes referred to as the

world's permissions. This would include all users who are not the file owner or a member of

the file's group.

For example, consider the output of the following command:

[root@localhost ~]# ls -l /etc/passwd

-rw-r--r--. 1 root root 4135 May 27 21:08 /etc/passwd

Based on the previous command output, the first ten characters could be described by the following

table:

The following table describes the possible values for the file type. Recall that these types were

covered in a previous chapter:

Character Type of the File

- A regular file which may be empty, contain text or binary data.

d A directory file which contains the names of other files and links to them.

l A symbolic link is a file name that refers (points) to another file.

b A block file is one that relates to a block hardware device where data is read in
blocks of data.

c A character file is one that relates to a character hardware device where data is

read one byte at a time.

p A pipe file works similar to the pipe symbol, allowing for the output of one

process to communicate to another process through the pipe file, where the

output of the one process is used as input for the other process.

s A socket file allows two processes to communicate, where both processes are

allowed to either send or receive data.

Although all the file types are listed in the table above, most likely you will never encounter anything

but regular, directory and link files unless you explore the /dev directory.

The characters in the permissions part of the output have the following meanings:

 r stands for read permission

 w stands for write permission

 x stands for execute permission

The permissions set on these files determine the level of access that a user will have on the file.

When a user runs a program and the program accesses a file, then the permissions are checked to

determine if the user has the correct access rights to the file.

The permissions themselves are deceptively simple and have a different meaning depending on

whether they are applied to a file or a directory:

Permission Meaning on a file Meaning on a directory

r The process can read the contents of

the file, meaning the contents can be
viewed and copied.

File names in the directory can be listed,

but other details are not available.

w The file can be written to by the

process, so changes to a file can be

saved. Note that w permission really

requires r permission on the file to
work correctly.

Files can be added to or removed from

the directory. Note that w permission

requires x permission on the directory to

work correctly.

x The file can be executed or run as a

process.
The user can use the cd command to

"get into" the directory and use the

directory in a pathname to access files

and, potentially, subdirectories under
this directory.

15.7.1 Understanding Permissions
While the chart on the previous page can be a handy reference, by itself it doesn't provide a clear

description of how permissions work. To better understand how permissions work, consider the

following scenarios.

To understand these scenarios, you should first understand the following diagram:

The important information is highlighted. The first box represents the / directory, with a user owner

of "root", a group owner of "root" and permissions of rwxr-xr-x. The second box represents

the /data directory, a directory that is under the / directory. The third box represents the

abc.txt file, which is stored in the /data directory.

You should also understand that if you are the owner of the file/directory, then only the user owner

permissions are used to determine access to that file/directory.

If you are not the owner, but are a member of the group that owns the file/directory, then only group

owner permissions are used to determine access to that file/directory.

If you aren't the owner and not a member of the file/directory group, then your permissions would be

"others".

15.7.1.1 Scenario #1 - The importance of Directory

Access
Question: Based on the following diagram, what access would the user "bob" have on the file

abc.txt?

Answer: None

Explanation: Initially it would appear that the user "bob" can view the contents of the abc.txt file

as well as copy the file, modify its contents and run it like a program. This erroneous conclusion

would be the result of looking solely at the file's permissions (rwx for the user "bob" in this case).

However, in order to do anything with the file, the user must first "get into" the /data directory. The

permissions for "bob" for the /data directory are the permissions for "others" (r--), which means

"bob" can't even use the cd command to get into the directory. If the execute permission (--x) was

set for the directory, then the user "bob" would be able to "get into" the directory, meaning the

permissions of the file itself would apply.

Lesson learned: The permissions of all parent directories must be considered before considering

the permissions on a specific file.

15.7.1.2 Scenario #2 - Viewing Directory Contents
Question: Based on the following diagram, who can use the ls command to display the contents of

the /data directory (ls /data)?

Answer: All users

Explanation: All that is required to be able to view a directory's contents is r permission on the

directory (and the ability to access the parent directories). The x permission for all users in the 0 /

directory means all users can use / as part of a path, so everyone is able to get through the /

directory to get to the /data directory. The r permission for all users in the /data directory means

all users can use the ls command to view the contents.

However, note that in order to see file details (ls -l) would also require x permission on the

directory. So while the root user and members of the root group have this access on the /data

directory, no other users would be able to execute ls -l /data.

Lesson learned: The r permission allows a user to view a listing of the directory.

15.7.1.3 Scenario #3 - Deleting Directory Contents
Question: Based on the following diagram, who can delete the /data/abc.txt file?

Answer: Only the root user

Explanation: A user needs no permissions at all on the file itself to delete a file. The w permission

on the directory that the file is stored in is required to delete a file in a directory. Based on that, it

would seem that all users could delete the /data/abc.txt file, since everyone has w permission

on the file.

However, to delete a file, you must also be able to "get into" the directory. Since only the root user

has x permission on the /data directory, only root can "get into" that directory in order to delete files

in this directory.

Lesson learned: The w permission allows a user to delete files from a directory, but only if the user

also has x permission on the directory.

15.7.1.4 Scenario #4 - Accessing the Contents of a

Directory
Question: True or false: Based on the following diagram, the user "bob" can successfully execute

the following command: more /data/abc.txt?

Answer: True

Explanation: As previously mentioned, in order to access a file, the user must have access to the

directory. The access to the directory only requires x permission; even though r permission would be

useful to list files in a directory, it isn't required to "get into" the directory and access files within the

directory.

When the command more /data/abc.txt is executed, the following permissions are checked: x

permission on the / directory, x permission on the data directory and r permission on the

abc.txt file. Since the user "bob" has all of these permissions, the command executes

successfully.

Lesson learned: The x permission is required to "get into" a directory, but the r permission on the

directory is not necessary unless you want to list the directory's contents.

15.7.1.5 Scenario #5 - the Complexity of Users and

Groups
Question: True or false: Based on the following diagram, the user "bob" can successfully execute

the following command: more /data/abc.txt (note that the /data directory has different user and

group owners than previous examples)?

Answer: Not enough information to determine.

Explanation: In order to access the /data/abc.txt file, the user "bob" needs to be able to "get

into" the /data directory. This requires x permission, which "bob" may or may not have, depending

on if he is a member of the "payroll" group.

If "bob" is a member of the "payroll" group, then his permissions on the /data directory are r-x and

the command more /data/abc.txt will execute successfully ("bob" also needs x on / and r

on abc.txt, which he already has). If he isn't a member of the "payroll group", his permissions on

the /data directory are --- and the more command would fail.

Lesson learned: You must look at each file and directory permissions separately and be aware of

which groups the user account belongs to.

15.7.1.6 Scenario #6 - Permission Priority

Question: True or false: Based on the following diagram, the user "bob" can successfully execute

the following command: more /data/abc.txt (note that the /data directory has different user and

group owners than previous example)?

Answer: False

Explanation: Recall that if you are the owner of a file, then the only permissions that are checked

are the user owner's permissions. In this case, that would be --- for "bob" on the /data/abc.txt

file.

In this case, members of the "bob" group and "others" have more permissions on the file than "bob"

has.

Lesson learned: Don't provide permissions to the group owner and "others" without applying at

least the same level of access as the owner of the file.

15.7.2 Using the chmod Command - Symbolic

Method
The chmod (change mode) command is used to change permissions on a directory. There are two

techniques that can be used with this command: symbolic and numeric. Both techniques use the

following basic syntax: chmod new_permission file_name.

To change a file's permissions, you either need to own the file or log in as the root user.

If you want to modify some of the current permissions, the symbolic method will likely be easier to

use. With this method, you specify which permissions you want to change on the file and the other

permissions remain as they are.

When specifying the "new_permission", you start by using one of the following characters to indicate

which permission set you want to change:

 u = change user owner's permissions

 g = change group owner's permissions

 o = change "others" permissions

 a = apply changes to all permission sets (user owner, group owner and "others")

Then you specify a + to add a permission or a - to remove a permission. Lastly, you specify r for

"read", w for "write" and x for "execute".

For example, to give the user owner read permission on a file named abc.txt, you could use the

following command:

[root@localhost ~]# chmod u+r abc.txt

Only the user owner's permission was changed. All other permissions remained as they were prior to

the execution of the chmod command.

You can combine values to make multiple changes to the file's permissions. For example, consider

the following command which will add read permission to the user owner and group owner while

removing write permission for "others":

[root@localhost ~]# chmod ug+r,o-w abc.txt

Lastly, you could use the = character instead of - or + to specify exactly the permissions you want for

a permission set:

[root@localhost ~]# chmod u=r-x abc.txt

15.7.3 Using the chmod Command - Numeric

Method
The numeric method (also called octal method) is useful when you want to change many

permissions on a file. It is based on the octal numbering system in which each permission type is

assigned a numeric value:

4 read

2 write

1 execute

By using a combination of numbers from 0 to 7, any possible combination of read, write and execute

permissions can be specified for a single permission set. For example:

7 rwx

6 rw-

5 r-x

4 r--

3 -wx

2 -w-

1 --x

0 ---

When the numeric method is used to change permissions, all nine permissions must be specified.

Because of this, the symbolic method is generally easier for changing a few permissions while the

numeric method is better for changes that are more drastic.

For example, to set the permissions of a file named abc.txt to be rwxr-xr-- you could use the

following command:

[root@localhost ~]# chmod 754 abc.txt

15.8 Revisiting the stat Command
Recall the stat command discussed earlier in this chapter. This command provided more detailed

information than the ls -l command provided.

Because of this, you may consider using the stat command instead of the ls -l command when

viewing permissions on a file. One big advantage of the stat command is that it shows permissions

both symbolically and by numeric method, as demonstrated below:

[sysadmin@localhost ~]$ stat /tmp/filetest1

 File: `/tmp/filetest1'

 Size: 0 Blocks: 0 IO Block: 4096 regular empty file

Device: fd00h/64768d Inode: 31477 Links: 1

Access: (0664/-rw-rw-r--) Uid: (502/sysadmin) Gid: (503/sysadmin)

Access: 2013-10-21 10:18:02.809118163 -0700

Modify: 2013-10-21 10:18:02.809118163 -0700

Change: 2013-10-21 10:18:02.809118163 -0700

15.9 umask
The umask command is a feature that is used to determine default permissions that are set when a

file or directory is created. Default permissions are determined when the umask value is subtracted

from the maximum allowable default permissions. The maximum default permissions are different for

files and directories:

file rw-rw-rw-

directories rwxrwxrwx

The permissions that are initially set on a file when it is created cannot exceed rw-rw-rw-. To have

the execute permission set on a file, you first need to create the file and then change the

permissions.

The umask command can be used to display the current umask value:

[sysadmin@localhost ~]$ umask

0002

A breakdown of the output:

 The first 0 is indicates that the umask is given as an octal number.

 The second 0 indicates which permissions to subtract from the default user owner's

permissions.

 The third 0 indicates which permissions to subtract from the default group owner's

permissions.

 The last number (2) indicates which permissions to subtract from the default other's

permissions.

Note that different users may have different umasks. Typically the root user will have a more

restrictive umask than normal user accounts:

[root@localhost ~]# umask

0022

15.9.1 How umask Works
To understand how umask works, assume that the umask is set to 027 and consider the following :

File Default 666

Umask -027

Result 640

The 027 umask means that, by default, new files would receive 640 or rw-r----- permissions, as

demonstrated below:

[sysadmin@localhost ~]$ umask 027

[sysadmin@localhost ~]$ touch sample

[sysadmin@localhost ~]$ ls -l sample

-rw-r-----. 1 sysadmin sysadmin 0 Oct 28 20:14 sample

Because the default permissions for directories are different than for files, a umask of 027 would

result in different initial permissions on new directories:

File Default 777

Umask -027

Result 750

The 027 umask means that, by default directories files would receive 750 or rwxr-x--- permissions,

as demonstrated below:

[sysadmin@localhost ~]$ umask 027

[sysadmin@localhost ~]$ mkdir test-dir

[sysadmin@localhost ~]$ ls -ld test-dir

drwxr-x---. 1 sysadmin sysadmin 4096 Oct 28 20:25 test-dir

The new umask will only be applied to file and directories created during that session. When a new

shell is started the default umask will again be in effect.

Permanently changing a user's umask requires modifying the .bashrc file located in that user's home

directory.

