12.1 Introduction

Linux distributions provide several different sets of commands for compressing and archiving
files and directories. This chapter will describe their advantages and disadvantages as well as
their usefulness in making backup copies of files and directories efficiently.

More sophisticated types of copying, using the dd and cpio commands, will also be covered.
These commands, while more complex, offer powerful features.

tar ‘ . gzip ::
’ tar :: bzip2 ::

Ce
12.2 tar Command

An archive is a single file, which consists of many files, though not necessarily compressed.
The tar command is typically used to make archives within Linux. These tar archive files,
sometimes called tarballs, were originally used to backup data onto magnetic tape. Tar is derived

from the words "tape archive".

While the primary purpose of the tar command is to merge multiple files into a single file, it is
capable of many different operations and there are numerous options. The functionality of
the tar command can be broken down into three basic functions: creating, viewing and
extracting archives.

tar

The tar command accepts all three styles of options (x, -x, --extract) as parameters. Do not
be surprised to see it used with options that have no hyphens (BSD style), a single hyphen
(UNIX style) or two hyphens (GNU style).

The tar command originally did not support compression, but a newer version that was
developed by the GNU project supports both gzip and bzip2compression. Both of these
compression schemes will be presented later in this chapter. To use gzip compression with

the tar command, use the -z option. To use bzip2 compression, use the -5 option. If a version
of the tarcommand does not support gzip Or bzip2 compression, the gzip or bzip2commands
can be used separately on the tar file.

To create a tar archive of the /etc/systemd directory, use the option -c to create and -£ to
specify a new file, followed by the directory to archive. Note that the - £ option must be specified
last, since it is indicating a filename:

tar -cf newfile.tar file

sysadmin@localhost:~$ tar -cf systemd-config.tar /etc/systemd

tar: Removing leading /' from member names
sysadmin@localhost:~$ 1s
esktop Downloads

)ocument s [usic

The -v verbose option will cause the tar command to display the files that are being included in
the archive. If compression is going to be used, gzip for instance, then the -z needs to be
added. File extensions are not relevant to Linux, but it is customary to add . tar.gz to the name
of the compressed archive:

sysadmin@Qlocalhost:~$ tar -cvzf systemd-config.tar.gz /etc/systemd

tar: Removing leading /' from member names

/etc/systemd/

/etc/systemd/system/

/etc/systemd/system/multi-user.target.wants/
/etc/systemd/system/multi-user.target.wants/rsyslog.service
/etc/systemd/system/multi-user.target.wants/bind9.service
/etc/systemd/system/multi-user.target.wants/ssh.service
/etc/systemd/system/syslog.service

/etc/systemd/system/sshd.service

sysadmin@localhost:~$ 1s

Desktop Downloads Pictures Templates

Documents Music Public Videos

Use the -t option to the tar command to view a list (table of contents) of a tar file. Even if the
archive file is compressed, the correct compression option does not need to be specified to view
a tar archive file. Only the file - and the list -toption are required to view the table of contents.
Once again, note that the -foption is used last so that the flename can be specified as an
argument to this option:

sysadmin@localhost:~$ tar -tf systemd-config.tar.gz

etc/systemd/

etc/systemd/system/

etc/systemd/system/multi-user.target.wants/
etc/systemd/system/multi-user.target.wants/rsyslog.service
etc/systemd/system/multi-user.target.wants/bind9.service
etc/systemd/system/multi-user.target.wants/ssh.service

etc/systemd/system/syslog.service

etc/systemd/system/sshd.service

To view the table of contents of the archive in a format similar to a long listing (like the 1s -
1 command), add the verbose -v option:

sysadmin@localhost:~$ tar -vtf systemd-config.tar.gz
drwxr-xr-x root/root 0 2014-09-18 22:24 etc/systemd/
drwxr-xr-x root/root 0 2014-09-18 22:25 etc/systemd/system/

drwxr-xr-x root/root 0 2014-09-18 22:25 etc/systemd/system/multi-us
er.target.wants/

lrwxrwxrwx root/root 0 2014-09-17 03:37 etc/systemd/system/multi-us
er.target.wants/rsyslog.service -> /lib/systemd/system/rsyslog.service

lrwxrwxrwx root/root 0 2014-09-18 22:24 etc/systemd/system/multi-us
er.target.wants/bind9.service -> /lib/systemd/system/bind9.service

lrwxXrwxrwx root/root 0 2014-09-18 22:25 etc/systemd/system/multi-us
er.target.wants/ssh.service -> /lib/systemd/system/ssh.service

lrwxXrwxrwx root/root 0 2014-09-17 03:37 etc/systemd/system/syslog.s
ervice -> /lib/systemd/system/rsyslog.service

lrwxrwxrwx root/root 0 2014-09-18 22:25 etc/systemd/system/sshd.ser
vice -> /lib/systemd/system/ssh.service

To extract the files from the tar file, use the -x option. Normally, the tarcommand will attempt to
extract the archive into the current directory, as demonstrated in the following example:
sysadmin@localhost:~$ tar -xf systemd-config.tar.gz

sysadmin@localhost:~$ 1s -R etc

BEEs

systemd

etc/systemd:

system

etc/systemd/system:

multi-user.target.wants sshd.service syslog.service

etc/systemd/system/multi-user.target.wants:

bind9.service rsyslog.service ssh.service

Use the -c option to specify an alternate directory to extract the contents into. This option is case
sensitive and should not be confused with the create or -coption. The extraction process can
also be made verbose by adding the -voption:

sysadmin@localhost:~$ tar -vxf systemd-config.tar.gz -C /tmp

etc/systemd/

etc/systemd/system/

etc/systemd/system/multi-user.target.wants/
etc/systemd/system/multi-user.target.wants/rsyslog.service
etc/systemd/system/multi-user.target.wants/bind9.service
etc/systemd/system/multi-user.target.wants/ssh.service

etc/systemd/system/syslog.service

etc/systemd/system/sshd.service

12.3 gzip and gunzip Commands

The gzip command is used to create a compressed archive file. Likewise, the gunzip command
is used to view the contents of an archive file, as well as extract those contents.

The gzip command should be used with caution, since its default behavior is to replace the
original file specified with a compressed version. In the following example, the red. txt file is
replaced with the compressed red. txt . gz file after using gzip:

sysadmin@localhost:~/test$ 1s red*

red. txt
sysadmin@localhost:~/test$ gzip red.txt

sysadmin@Qlocalhost:~/test$ 1ls red*

To avoid replacing the original version of a file when using gzip, use the -coption. This causes
the gzip command to send the gzipped data to standard output, and given that the output of
the gzip command is binary data it will need to be redirected into a file. Remember to capture
the output of the gzipcommand and redirect it into a file use the > character:

sysadmin@localhost:~/test$ gzip -c numbers.txt > numbers.txt.gz
sysadmin@Qlocalhost:~/test$ 1ls numbers*

numbers.txt

Using the gzip command with the -c option and redirection created a gzipped file while leaving
the original file intact. This can be useful as the gzipped file can be moved to an archive directory
location while preserving the original file in its original location.

The gunzip command reverses what gzip does, so files will be uncompressed and the gzipped
file will be replaced with the uncompressed file:

sysadmin@Qlocalhost:~/test$ gunzip red.txt

sysadmin@Qlocalhost:~/test$ 1s red*

red.txt

To view the amount of compression of an existing archived file, use the -1 option with gunzip:

sysadmin@Qlocalhost:~/test$ gunzip -1 numbers.txt.gz
compressed uncompressed ratio uncompressed name

42 10 -20.0% numbers.txt

While it supports recursion with the -r option, by default gzip attempts to replace the original file
with the gzipped file. This leads to errors when the files being gzipped are not owned by the user
that tries to gzip them.

sysadmin@localhost:~/test$ gzip -r /run

gzip: /run/network/.ifstate.lock.gz: Permission denied

gzip: /run/network/ifstate.gz: Permission denied

gzip: /run/resolvconf/interface/original.resolvconf.gz: Permission denied

gzip: /run/resolvconf/resolv.conf.gz: Permission denied

/run/utmp.gz:

/run/rsyslogd.pid.
/run/crond.pid.gz:
/run/crond.reboot:

/run/sshd.pid.gz:

Permission denied

gz: Permission denied
Permission denied
Permission denied

Permission denied

/run/named/named.pid.gz:

/run/named/session.key:

Permission denied

Permission denied

/run/motd.dynamic.gz:

Permission denied

In order to be able to recursively compress files with the gzip command, a user needs to have
the correct permissions on the directories the files are in. Typically this is limited to directories
within the user's own home directory.

For example, to use the gzip command recursively on the ~/exampledirectory, it would be
successful in replacing regular files with a gzip archive files:

sysadmin@Qlocalhost:~/test$ mkdir ./example

sysadmin@localhost:~/test$ touch ./example/one ./example/two ./example/thre

@

sysadmin@Rlocalhost:~/test$ 1s ./example/

one three two

sysadmin@Qlocalhost:~/test$ gzip -r ./example

sysadmin@localhost:~/test$ 1s ./example/

The gunzip command can also work recursively, assuming the user has the correct permissions.
As it works, it removes the . gz extension from each file:

sysadmin@localhost:~/test$ gunzip -r ./example/

sysadmin@localhost:~/test$ 1s

./example/

one three two

Consider This

Permissions can have an impact on file management commands, such as

the gzip and gunzip commands. To gzip Or gunzip a file within a directory, a user must have
write and execute permission on a directory as well as read permission on the file. Regular users
typically only have this type of permission in their home directory and its subdirectories.

12.4 bzip2 and bunzip2 Commands

The bzip2 and bunzip2 commands work in a nearly identical fashion to

the gzip and gunzip commands. The differences are in the type of algorithm (how the files are
compressed) used to compress the files and the .bz2 extension is added or removed from the
file name (rather than the . gz extension).

When a new compressed file is created from an existing file with the bzip2command, the

.bz2 extension is added to the file name. Using the -v option will cause bzip2 to report the
compression ratio after it has finished. The gzipcommand also supports the -v option, so a file
can be compressed using both commands and the compression ratio compared to determine
which command uses a better compression technique for that specific file.

bzip2 ::

sysadmin@localhost:~$ 1ls ./example/

one three two

sysadmin@localhost:~$ bzip2 -v ./example/*
./example/one: no data compressed.
./example/three: no data compressed.
./example/two: no data compressed.

sysadmin@localhost:~$ 1ls ./example/

one.bz2 three.bz2 two.bz2

Note that there was no data to compress in the empty files, one, two, and three. Just
like gunzip, the bunzip2 command uncompresses the file and removes the .bz2 extension:
sysadmin@localhost:~$ bunzip2 -v ./example/*
./example/one.bz2: done
./example/three.bz2: done
./example/two.bz2: done
sysadmin@localhost:~$ 1ls ./example/

one three two

As demonstrated in the examples above, the bzip2 command doesn't have an option -r to do
recursion, so a wildcard can be used to match multiple files. The bzip2 command also has an
option -c to send the data to standard output, so it can be redirected to a new file:

sysadmin@localhost:~test$ bzip2 -c red.txt > red.txt.bz2

sysadmin@localhost:~test$ 1ls red*

red.txt red.txt.bz2

12.5 zip and unzip Commands

Of the many commands available in Linux that take multiple files and combine them into one,

the zip command might be most familiar. The functionality of zip compressed file management
has been available in the personal computing world prior to Windows and is now included within
the file management graphical utilities found within Microsoft's Windows and Apple's Mac OS X.

Z1ip ::

Although it is not a required topic to learn for the LPIC 1 exams, the zipcommand is very useful
for creating archives that can easily be shared across multiple operating systems. The basic form
of a zip command is:

zip [options..] destination files..

The destination file will automatically have a . zip extension added to it, if an extension is not
specified. Also, the original files will not be replaced.
sysadmin@localhost:~$ zip ./example/package ./example/*
adding: example/one (stored 0%)
adding: example/three (stored 0%)
adding: example/two (stored 0%)
sysadmin@Rlocalhost:~$ 1ls ./example/

one package.zip three two

One especially useful option for the zip command is the -r option, which allows
the zip command to recursively compress multiple directories into a single file. For example, to
back up the files stored in the /var/log/cupsdirectory, execute the following command:
sysadmin@Qlocalhost:~$ zip -r ./example/logfiles /var/log/cups/

adding: var/log/cups/ (stored 0%)

adding: var/log/cups/access_log.3.gz (stored 0%)

adding: var/log/cups/access log.2.gz (stored 0%)

adding: var/log/cups/access_ log.6.gz (stored 0%

adding: var/log/cups/error log (stored 0%)

adding: var/log/cups/error log.l.gz (stored 0%)

adding: var/log/cups/access log.5.gz (stored 0%)

adding: var/log/cups/error log.3.gz (stored 0%)

adding: var/log/cups/error log.2.gz (stored 0%)

adding: var/log/cups/access_log.l.gz (stored 0%)

adding: var/log/cups/access_log (deflated 85%)

adding: var/log/cups/access log.4.gz (stored 0%)

adding: var/log/cups/access_log.7.gz (stored 0%)

adding: var/log/cups/page log (stored 0%)

sysadmin@localhost:~$ 1ls ./example/

logfiles.zip one package.zip three two

Note that the log files had been gzipped prior to the use of the zip command.

The unzip command is used to extract the files from the zip archive file. Use
the unzip command without options to extract a zip archive:

sysadmin@localhost:~$ cd ./example/

sysadmin@localhost:~/example$ unzip ./logfiles.zip

Archive:

creating:
extracting:
extracting:
extracting:
extracting:
extracting:
extracting:
extracting:
extracting:
extracting:
inflating:
extracting:
extracting:

extracting:

./logfiles.zip

var/log/cups/
var/log/cups/access log.3.gz
var/log/cups/access_log.2.gz
var/log/cups/access log.6.gz
var/log/cups/error log
var/log/cups/error log.l.gz
var/log/cups/access_log.5.gz
var/log/cups/error log.3.gz
var/log/cups/error log.2.gz
var/log/cups/access _log.l.gz
var/log/cups/access_log
var/log/cups/access_log.4.gz
var/log/cups/access_log.7.gz

var/log/cups/page log

sysadmin@Qlocalhost:~/example$ 1ls ~/example/var/log/cups/

access log access log.l.gz access log.2.g9z
.gz access log.5.gz access log.6.gz
g.l.gz error log.2.gz error log.3.gz

access log.3.gz access log.4
access log.7.gz error log error lo
sysadmin@localhost ~/example $

A new directory tree is created ~/example/var/log/cups/ that contains the files that were
contained inside of the zip archive file.

To view the contents of a zip file without unpacking it, use unzip to view the list of its files with
the -1 option:

sysadmin@localhost:~/example$ unzip -1 ./package.zip

Archive: ./package.zip

Name

2014-07-17 19:14 example/one

2014-07-17 19:14 example/three

2014-07-17 19:14 example/two

12.6 xz Command

Another archival tool covered in the LPIC-1 objectives is xz. Using the -zoption, xz can be used
to compress a group of files individually.

sysadmin@localhost:~/test$ 1s

adjectives.txt alpha.txt linux.txt people.csv

alpha-first.txt animals.txt longfile.txt profile.txt

alpha-first.txt.original food.txt newhome. txt red. txt

alpha-second. txt hidden.txt numbers. txt

alpha-third. txt letters.txt os.csv

sysadmin@localhost:~/test$ xz -z *

sysadmin@localhost:~/test$ 1s

adjectives.txt.xz alpha.txt.xz linux.txt.xz people.csv.xz

alpha-first.txt.original.xz animals.txt.xz longfile.txt.xz profile.txt.x
oz,

alpha-first.txt.xz food.txt.xz newhome.txt.xz red.txt.xz
alpha-second.txt.xz hidden.txt.xz numbers.txt.xz

alpha-third.txt.xz letters.txt.xz os.csv.xz

The -d option can be used to uncompress the files just as easily.

sysadmin@Qlocalhost:~/test$ xz -d *

sysadmin@Rlocalhost:~/test$ 1s

adjectives.txt alpha.txt linux.txt people.csv
alpha-first.txt animals.txt longfile.txt profile.txt
alpha-first.txt.original food.txt newhome. txt red. txt
alpha-second. txt hidden.txt numbers. txt

alpha-third. txt letters.txt os.csv

However, it is often preferable to bundle to files before zipping them in any format,
whether bzip, gzip, or xz. The following example archives the test directory using tar before
compressing it with xz:

sysadmin@localhost:~/test$ cd

sysadmin@localhost:~$ tar -cf testdirectory.tar ./test/
sysadmin@localhost:~$ 1s

Desktop Downloads Pictures Templates test

Documents Music Public Videos testdirectory.tar
sysadmin@localhost:~$ xz -z testdirectory.tar
sysadmin@localhost:~$ 1s

Desktop Downloads Pictures Templates test

Documents Music Public Videos testdirectory.tar.xz

The tar command is also able to compress using xz directly using the -Joption:

sysadmin@localhost:~$ 1s

Desktop Documents Downloads Music Pictures Public Templates Videos
test

sysadmin@localhost:~$ tar -cJf testdirectory.tar.xz ./test/
sysadmin@localhost:~$ 1s
Desktop Downloads Pictures Templates test

Documents Music Public Videos testdirectory.tar.xz

There are a huge number of options for the xz command, some relating to the compression ratio.
Keep in mind when using xz that the more aggressive the compression, the harder the processor
will have to work.

12.7 cpio Command

Another type of archive command that can merge many files into a single file is
the cpio command. This command gets its name from two of its modes: copy-in mode and copy-
out mode.

In copy-out mode, the cpio command will copy files from a directory into an archive. In copy-in
mode, the cpio command will either list the archive file contents or copy files from an archive into
a directory. It is easy to reverse these statements and get confused. Just remember that the
archive is outside of the operating system.

There is a third mode called the copy-pass mode. In this mode, the cpiocommand copies files
from one directory to another, which combines the copy-out and copy-in modes without creating
an archive file.

To create a new archive file, the cpio command will run in copy-out mode taking a list of files
from standard input and producing a file stream that can be redirected into a new archive file.
Standard input in this case refers to the keyboard input by default, but this input could also come
from the output of other commands.

The -o option puts the cpio command into copy-out mode. Using the -voption will cause

the cpio command to list the files that it processes. So, to archive the current directory, execute
the 1s command and then send a list of the files into the cpio command as input by using the
pipe | character (recall that the > character will capture the output of a command and put it into a
file):

sysadmin@localhost:~$ 1ls | cpio -ov > archive.cpio

Desktop
Documents
Downloads
Music
Pictures
Public
Templates
Videos
example
test

1 block

Consider This

Taking the output of one command and sending it into another command is called redirection.
While redirection is discussed in detail in a later chapter, the following provides a brief
introduction to the topic:

Consider the following pseudo command line: cmd1l | cmd2

The output of cmd1, which would normally be displayed in the terminal, is instead sent as
standard input to cmd2. So, instead of having a user type data from the keyboard, cmd2 uses the
data from the output of cmd1.

The find command is a good way to generate the list of files to be sent to cpio.

The find command is automatically recursive, so it can be used to create a list of all files starting
at a particular directory. For example, to archive the home directory and all of its subdirectories
and files, execute the following command:

sysadmin@localhost:~$ find ~

/home/sysadmin

/home/sysadmin/.bash logout

/home/sysadmin/.bashrc
/home/sysadmin/.profile
/home/sysadmin/.selected editor
/home/sysadmin/Desktop
/home/sysadmin/Documents
/home/sysadmin/Downloads
/home/sysadmin/Music
/home/sysadmin/Pictures
/home/sysadmin/Public
/home/sysadmin/Templates
/home/sysadmin/Videos

/home/sysadmin/test

The -v verbose option is used to show the activity of the cpio command in the terminal.

To extract the files that are in a cpio archive, use the -1 option with the cpiocommand to specify
copy-in mode.. By default, cpio will not overwrite existing files unless the -u option is used.
The cpio command will not create directories unless the -d option is used.

The cpio command also makes use of standard input to determine the name of the file that will
be extracted from the archive. Therefore to extract files and directories, as well as overwriting
existing files, execute the following:

sysadmin@localhost:~$ echo "/tmp/home.cpio" | cpio -iud

To specify the pass-through mode of the cpio command, specify the -p option. Again, if any
directories are included, the -d option needs to be specified. To copy all the files from the home
directory to a directory called /tmp/destination, use the following command line:

sysadmin@localhost:~$ find ~ | cpio -pd /tmp/destination

To prevent problems with files that have white space characters (like the spacebar character)
embedded in them specify the -print0 option to the findcommand. This causes the list of files
to be separated by the null character, instead of a new line character, which allows for filenames
with spaces in them to be treated as a single filename (otherwise a file named hello

there would be considered two files, one hamed hello and the other named there).

For the cpio command to process the list of null separated files, add the --nu11 option. This
results in a more robust version of the previous pass-through command that looks like this:

sysadmin@localhost:~$ find . -printO | cpio --null -vd /tmp/destination

Consider This

To understand why the cpio command might be used for copying files from one directory to
another instead of using the cp command recursively, consider the following advantages:

e The cpio command automatically preserves file attributes (metadata) like links,
permissions, timestamps and ownerships. These attributes are not preserved
with using the cp command.

e The cpio command also works with special files better than the cocommand.

12.8 dd Command

The dd command is a utility for copying files or entire partitions at the bit level. This command
has several useful features, including:

e |t can be used to clone or delete (wipe) entire disks or partitions.

e |t can be used to copy raw data to removable devices, such as USB drives and
CDROMs.

e |t can backup and restore the MBR (Master Boot Record), a critical software
component that is used to boot the system.

e |t can be used to create a file of a specific size that is filled with binary zeros,
which can then be used as a swap file (virtual memory).

The dd command uses special arguments to specify how it will work. The following illustrates
some of the more commonly used arguments:

e if -theinput file to be read.

e of - the output file to be written.

e Dbs - the block size to be used. By default, the value is considered to be in bytes.
Use the following suffixes to specify other units: K, M, G, and Tfor kilobytes,
megabytes, gigabytes and terabytes.

e count - the number of blocks to read from the input file.

In the following example, a file named /tmp/swapex is created with 500 "one megabyte" size
blocks of zeros:

sysadmin@localhost:~$ dd if=/dev/zero of=/tmp/swapex bs=1M count=500

50040 records in
500+0 records out

524288000 bytes (524 MB) copied, 0.825745 s, 635 MB/s

No block size or count needs to be specified when copying over entire devices. For example, to
clone from one hard drive (/dev/sda) to another (/dev/sdb) execute the following command:

sysadmin@localhost:~$ dd if=/dev/sda of=/dev/sdb

The dd command can even be used to make an . iso image backup of your CODROM or DVD
device. The following will take all of the data from the DVD (/dev/dvd) and stores the data into
a local file called dvd. iso:

sysadmin@localhost:~$ dd if=/dev/dvd of=dvd.iso

Consider This
Device files are files used to refer to devices on the system, such as hard drives, CDROMS and

partitions. The following information is provided to add clarity to the examples shown with
the dd command:

e /dev/sda - A device file that typically refers to the first hard drive on the system.

e /dev/sdb - A device file that typically refers to the second hard drive on the
system.

e /dev/dvd - A device file that typically refers to the first DVD drive on the system.

Chapter 12: Archive Commands

This chapter will cover the following exam objectives:
103.3: Perform basic file management
Weight: 4

Description: Candidates should be able to use the basic Linux commands to manage files and
directories.

Key Knowledge Areas:

e Usage of tar, cpio and dd
Section 12.1 | Section 12.2 | Section 12.7 | Section 12.8

Chapter 12: Archive Commands

bzip2
Compresses files using the Burrows-Wheeler block sorting text compression algorithm,
and Huffman coding. Compression is generally considerably better than that achieved by
more conventional LZ77/LZ78-based compressors, and approaches the performance of
the PPM family of statistical compressors.
Section 12.4

cpio
Command used to copy files into and out of archives. GNU cpio is a tool for creating and
extracting archives, or copying files from one place to another. It handles a number of
cpio formats as well as reading and writing tar files.
Section 12.7

dd
Command used to copy and covert a file. The dd command is a simple, yet versatile and
powerful tool. It can be used to copy from source to destination, block-by-block,
regardless of the filesystem types or operating systems. A convenient method is to use
dd from a live environment, as in a livecd.
Section 12.8

gunzip
Command that decompress files created by gzip, zip, compress, compress -H or pack.
Section 12.3

gzip
Command used to comperess or expand files. Gzip reduces the size of the named files
using Lempel-Ziv coding (LZ77). Whenever possible, each file is replaced by one with the
extension .gz, while keeping the same ownership modes, access and modification times.
(The default extension is -gz for VMS, z for MSDOS, OS/2 FAT, Windows NT FAT and
Atari.)
Section 12.3

tar
Command that stores and extracts files from tape or disk archive. This is the GNU
version of the tar archiving utility.
Section 12.2

Xz

Command that can compress or decompress .zx or .Izma files. xz is a general-purpose
data compression tool with command line syntax similar to gzip(1) and bzip2(1). The
native file format is the .xz format, but also the legacy .Izma format and raw compressed

https://content.netdevgroup.com/contents/lpic1-s1/12/12.1
https://content.netdevgroup.com/contents/lpic1-s1/12/12.2
https://content.netdevgroup.com/contents/lpic1-s1/12/12.7
https://content.netdevgroup.com/contents/lpic1-s1/12/12.8
https://content.netdevgroup.com/contents/lpic1-s1/12/#c1
https://content.netdevgroup.com/contents/lpic1-s1/12/12.4
https://content.netdevgroup.com/contents/lpic1-s1/12/12.7
https://content.netdevgroup.com/contents/lpic1-s1/12/12.8
https://content.netdevgroup.com/contents/lpic1-s1/12/12.3
https://content.netdevgroup.com/contents/lpic1-s1/12/12.3
https://content.netdevgroup.com/contents/lpic1-s1/12/12.2

streams with no container format headers are supported.
Section 12.6

https://content.netdevgroup.com/contents/lpic1-s1/12/12.6

