
10.1 Introduction
One of the many advantages of having so many different Linux distributions is that some of them are

designed to run on specific hardware platforms. In fact, there is a Linux distribution specifically

designed for just about all modern hardware platforms.

Each of these hardware platforms has a great deal of variety in the hardware components that are

available. In addition to several different types of hard drives, there are many different monitors and

printers. With the popularity of USB devices, such as USB storage devices, cameras and cell

phones, the number of available devices numbers in the thousands.

In some cases, this poses problems as these hardware devices typically need some sort of software

(called drivers or modules) that allows them to communicate with the installed operating system.

Hardware manufactures often provide this software, but typically for Microsoft Windows, not Linux.

The Linux mascot, Tux, is however starting to appear more often on hardware products, indicating

Linux support.

In addition to vendor support, there is a great deal of community support that strives to provide

drivers for Linux systems. Although not all hardware has the necessary drivers, there is a good

amount that does, making the challenge for Linux users and administrators to either find the correct

drivers or choose hardware that has some level of support in Linux.

In this chapter, you will learn about core hardware devices, including how to use Linux commands to

display vital hardware device information.

10.2 Linux Essentials Exam Objectives
This chapter will cover the topics for the following Linux Essentials exam objectives:

Topic 4: The Linux Operating System (weight: 8)

 4.2: Understanding Computer Hardware

 Weight: 2

 Description: Familiarity with the components that go into building desktop and server

computers.

 Key Knowledge Areas:

 Hardware

 The following is a partial list of the used files, terms, and utilities:

 Hard drives and partitions, motherboards, processors, power supplies, optical

drives, peripherals

 Display types

 Drivers

10.3 Processors

A Central Processing Unit (CPU or processor) is one of the most important hardware components of

a computer. It performs the decision making as well as the calculations that need to be performed to

properly run an operating system. The processor is essentially a computer chip.

The processor is connected to the other hardware via a motherboard, also known as the system

board. Motherboards are designed to work with specific types of processors.

If a hardware system has more than one processor, the system is referred to as a multiprocessor. If

more than one processor is combined into a single processor chip, then it is called multi-core.

Although support is available for more types of processors in Linux than any other operating system,

there are primarily just two types of processors used on desktop and server computers: x86 and

x86_64. On an x86 system, the system processes data 32 bits at a time; on a x86_64 the system

processes data 64 bits at a time. A x86_64 system is also capable of also processing data 32 bits at

a time in a backward compatible mode. One of the main advantages to a 64 bit system is that the

system is able to work with more memory.

The x86 family of processors was originated by Intel in 1978 with the release of the 8086 processor.

Since that time, Intel has produced many other processors that are improvements to the original

8086; they are known generically as x86 processors. These processors include the 80386 (also

known as the i386), 80486 (i486), the Pentium series (i586) and the Pentium Pro series (i686). In

addition to Intel, other companies like AMD and Cyrix have also produced x86 compatible

processors. While Linux is capable of supporting processors back to the i386 generation, many

distributions limit their support to i686 or later.

The x86_64 family of processors, including the 64 bit processors from Intel and AMD, have been in

production since around the year 2000. As a result, most of the modern processors built today are

x86_64. While the hardware has been available for over a decade now, the software to support this

family of processors has been much slower to develop. Even as of 2013, there are many software

packages that are available for the x86 architecture, but not the x86_64.

You can see the family your CPU belongs to, using the arch command:

Another command you can use to identify the type of CPU in your system is the lscpu command:

The first line of this output shows that the CPU is being used in a 32 bit mode, as the architecture

reported is i686. The second line of output shows that the CPU is capable of operating in either a 32

or 64 bit mode, therefore it is actually a 64 bit CPU.

The most detailed way of displaying information about your CPU(s) is viewing

the/proc/cpuinfo file with the cat command:

While much of the output of the lspcu and the contents of the /proc/cpuinfo file appears to be

the same, one benefit to viewing the /proc/cpuinfo file is that the flags of the CPU are displayed.

The flags of a CPU are a very important component, since they indicate which features the CPU

supports and the capabilities of the CPU.

For example, the output from the previous example contains the flag lm (long mode), indicating that

this CPU is 64-bit capable. There are also flags that indicated if the CPU is capable of supporting

virtual machines (the ability to have multiple operating systems on a single computer).

10.4 Motherboards and Buses

The motherboard, or system board, is the main hardware board in the computer through which the

CPU, Random Access Memory (RAM) and other components are all connected together. Some

devices are attached directly to the motherboard, while other devices are connected via a bus to the

motherboard.

10.4.1 dmidecode
The system board of many computers contains what is known as Basic Input and Output System

(BIOS). System Management BIOS (SMBIOS) is the standard that defines the data structures and

how to communicate information about computer hardware. The dmidecode command is able to

read and display the information from SMBIOS.

For devices directly attached to the motherboard, an administrator can use the dmidecodecommand

to view them. There is a great deal of information provided by the output of this command. The

following examples provide you with a few ideas of what you can expect to learn from the output of

this command.

In the first example, you can see that the BIOS supports booting directly from the CD-ROM. This is

important since operating system installs are often done by booting directly from the install CD:

In the next example, you can see that a total of 2048 (about 2GB) of RAM is installed on the system:

10.4.2 Random Access Memory
The motherboard normally has slots where Random Access Memory (RAM) can be connected to the

system. 32 bit architecture systems can use up to 4 gigabytes (GB) of RAM, while 64 bit

architectures are capable of addressing and using far more RAM.

In some cases, the RAM your system has might not be enough to handle all of the operating system

requirements. Each program needs to store data in RAM and the programs themselves are loaded

into RAM when they execute.

To avoid having the system fail due to a lack of RAM, virtual RAM (or swap space) is utilized. Virtual

RAM is hard drive space that is used to temporarily store RAM data when the system is running out

of RAM. Data that is stored in RAM and that has not been used recently is copied on to the hard

drive so currently active programs can use the RAM. If needed, this swapped data can be stored

back into RAM at a later time.

To view the amount of RAM in your system, including the virtual RAM, execute the freecommand.

The free command has a -m option to force the output to be rounded to the nearest megabyte and

a -g option to force the output to be rounded to the nearest gigabyte:

The output of executing this free command shows that the system it was executed on a system has

a total of 1,894 megabytes and is currently using 356 megabytes.

The amount of swap appears to be approximately 4 gigabytes, although none of it appears to be in

use. This makes sense because so much of the physical RAM is free, so there is no need at this

time for virtual RAM to be used.

10.4.3 Peripheral Devices
The motherboard has buses that allow for multiple devices to connect to the system, including the

Peripheral Component Interconnect (PCI) and Universal Serial Bus (USB). The motherboard also

has connectors for monitors, keyboards and mice.

In order to view all of the devices connected by the PCI bus, execute the lspci command. The

following is a sample output of this command. As you can see below in the highlighted sections, this

system has a VGA controller (a monitor connector), a SCSI storage controller (a type of hard drive)

and an Ethernet controller (a network connector):

Executing the lspci command with the -nn option shows both a numeric identifier for each device,

as well as the original text description:

The highlighted section, [8086:100f], is referred to as the [vendor:device] section.

Using the [vendor:device] information can be useful for displaying detailed information about a

specific device. By using the -d vendor:device option, you can select to view information about

just one device.

You can also view more detailed information by using either the -v, -vv or -vvv option. The more

"v's", the more verbose the output will be. For example:

The lspci command shows detailed information about devices connected to the system via the PCI

bus. This information can be helpful to determine if the device is supported by the system, as

indicated by a Kernel driver or Kernel module in use, as shown in the last couple of lines of output

above.

10.4.4 Universal Serial Bus Devices
While the PCI bus is used for many internal devices such as sound and network cards, many

external devices (or peripherals) are connected to the computer via USB. Devices connected

internally are usually cold-plug, meaning the system must be shut down in order to connect or

disconnect a device. USB devices are hot-plug, meaning they can be connected or disconnected

while the system is running.

To display the devices connected to the system via USB, execute the lsusb command:

The verbose option, -v, for the lsusb command shows a great amount of detail about each device:

10.5 Hardware Abstraction Layer
HAL is the Hardware Abstraction Layer. The daemon for HAL is hald, a process that gathers

information about all devices connected to the system. When events occur that change the state of

the connected devices, such as when a USB device is attached to the system, then haldbroadcasts

this new information to any processes that have registered to be notified about new events.

The lshal command allows you to view the devices detected by HAL. This command produces a

huge amount of output; the following provides a small sample:

10.6 Disk Devices
Disk devices (AKA, hard drives) may be attached to the system in a number of ways; the controller

may be integrated into motherboard, on a PCI (Peripheral Component Interconnect) card or a USB

device.

Hard drives are divided into partitions. A partition is a logical division of a hard drive, designed to

take a large amount of available storage space and break it up into smaller "chunks". While it is

common on Microsoft Windows to have a single partition for each hard drive, on Linux distributions,

multiple partitions per hard drive is common.

Some hard drives make use of a partitioning technology called Master Boot Record (MBR) while

others make use of a partitioning type called GUID Partitioning Table (GPT). The MBR type of

partitioning has been used since the early days of the Personal Computer (PC) and the GPT type

has been available since the year 2000.

An old term used to describe an internal hard disk is "fixed disk", as the disk is fixed (not removable).

This term gave rise to several command names: the fdisk, cfdisk and sfdiskcommands, which

are tools for working with the MBR partitioned disks.

The GPT disks use a newer type of partitioning, which allows the user to divide the disk into more

partitions than what MBR supports. GPT also allows having partitions which can be larger than two

terabytes (MBR does not). The tools for managing GPT disks are named similar to

the fdiskcounterparts: gdisk, cgdisk, and sgdisk.

There is also a family of tools that attempts to support both MBR and GPT type disks. This set of

tools includes the parted command and the graphical gparted tool.

Hard drives are associated with file names (called device files) that are stored in the /devdirectory.

Different types of hard drives are given slightly different names: hd for IDE (Intelligent Drive

Electronics) hard drives and sd for USB, SATA (Serial Advanced Technology Attachment) and SCSI

(Small Computer System Interface) hard drives.

Each hard drive is assigned a letter, for example, the first IDE hard drive would have a device file

name of /dev/hda and the second IDE hard drive would have be associated with

the /dev/hdbdevice file.

Partitions are given unique numbers for each device. For example, if a USB hard drive had two

partitions, they could be associated with the /dev/sda1 and /dev/sda2 device files.

In the following output, you can see that this system has three "sd"

devices: /dev/sda,/dev/sdb and /dev/sdc. Also, you can see there are two partitions on the first

device (as evidenced by the /dev/sda1 and /dev/sda2 files) and one partition on the second

device (as evidenced by the /dev/sdb1 file):

In the following example, the fdisk command is used to display partition information on the first "sd"

device (Note: The following command requires root access):

Creating and modifying partitions is beyond the scope of this course.

10.7 Video Display Devices
In order to display video (output to the monitor), the computer system must have a video display

device (AKA, video card) and a monitor. Video display devices are often directly attached to the

motherboard, although they can also be connected through the PCI bus slots on the motherboard.

Unfortunately, since the early days of the PC, no video standard has been approved by the major

vendors, so each video display device usually requires a proprietary driver provided by the vendor.

Drivers are software programs that allow the operating system to communicate with the device.

Drivers must be written for the specific operating system, something that is commonly done for

Microsoft Windows, but not always for Linux. Fortunately, the three largest video display vendors all

now provide at least some level of Linux support.

There are two types of video cables commonly used: the analog 15 pin Video Graphics Array

(VGA) cable and the 29 pin Digital Visual Interface (DVI).

In order for monitors to work properly with video display devices, they must be able to support the

same resolution as the video display device. Normally, the software driving the video display device

(commonly the X.org server) will normally be able to automatically detect the maximum resolution

that the video display and monitor can both support and set the screen resolution to that value.

Graphical tools are normally provided to change your resolution, as well as the maximum number of

colors that can be displayed (known as the color depth) with your Linux distribution. For distributions

using the X.org server, the /etc/X11/xorg.conf file can be used to change resolution, color depth

and other settings.

10.8 Managing Devices

In order for a device to be used in Linux, there may be several different kinds of software required.

First of all there is the driver software. The driver could be compiled as part of the Linux kernel,

loaded into the kernel as a module or loaded by a user command or application. Most devices have

the driver either built-in to the kernel or have it loaded into the kernel, as the driver may require the

low-level kind of access that the kernel has with devices.

External devices, like scanners and printers, typically have their drivers loaded by an application and

these drivers in turn communicate through the device via the kernel through an interface such as

USB.

In order to be successful in enabling devices in Linux, it is best to check the Linux distribution to see

if the device is certified to work with that distribution. Commercial distributions like Red Hat and

SUSE have web pages dedicated to listing hardware that is certified or approved to work with their

software.

Additional tips on being successful with connecting your devices: avoid brand new or highly

specialized devices and check with the vendor of the device to see if they support Linux before

making a purchase.

