CISCO Cisco Networking Academy Mind Wide Open

Chapter 8: Subnetting IP networks

Introduction to Networks v5.1

Chapter Outline

8.0 Introduction
8.1 Subnetting an IPv4 Network
8.2 Addressing Schemes
8.3 Design Considerations for IPv6

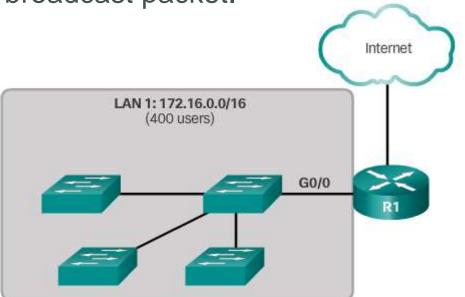
8.4 Summary

Section 8.1: Subnetting an IPv4 Network

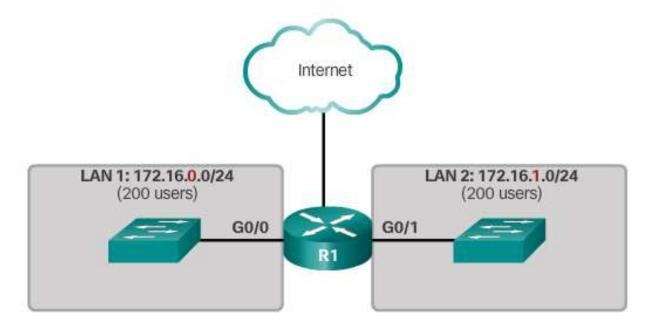
Upon completion of this section, you should be able to:

- Explain how subnetting segments a network to enable better communication.
- Explain how to calculate IPv4 subnets for a /24 prefix.
- Explain how to calculate IPv4 subnets for a /16 and /8 prefix.
- Given a set of requirements for subnetting, implement an IPv4 addressing scheme.
- Explain how to create a flexible addressing scheme using variable length subnet masking (VLSM).

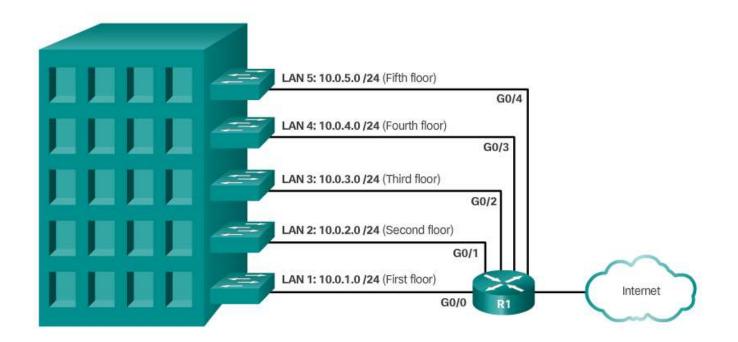
Topic 8.1.1: Network Segmentation


Broadcast Domains

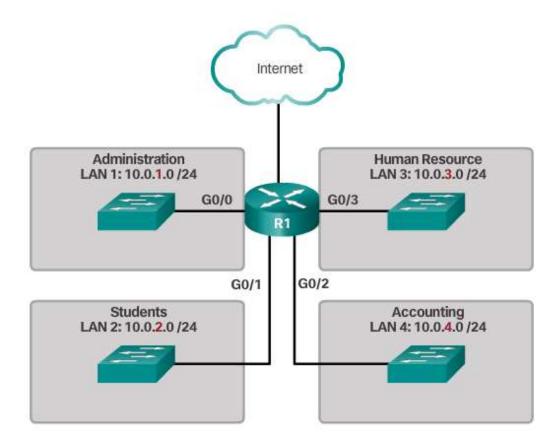
Each router interface connects a *broadcast domain* and broadcasts are only propagated within its specific broadcast domain.


Problems with Large Broadcast Domains

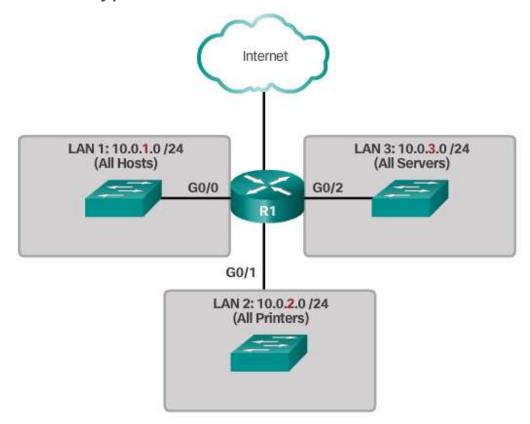
- Slow network operations due to the significant amount of broadcast traffic.
- Slow device operations because a device must accept and process each broadcast packet.


Problems with Large Broadcast Domains (cont.)

- Solution -reduce the size of the network to create smaller broadcast domains in a process called *subnetting*.
- These smaller network spaces are called *subnets*.


Reasons for Subnetting

Network administrators can group devices and services into subnets that are determined by: Location


Reasons for Subnetting (cont.)

Network administrators can group devices and services into subnets that are determined by: Organizational unit.

Reasons for Subnetting (cont.)

Network administrators can group devices and services into subnets that are determined by: Device type.

Topic 8.1.2: Subnetting an IPv4 Network

Octet Boundaries

Subnetting Networks on the Octet Boundary

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of hosts
/8	255.0.0.0	nnnnnnn . hhhhhhhh . hhhhhhhh . hhhhhhhh	16,777,214
/16	255.255.0.0	nnnnnnn, nnnnnnn, hhhhhhhh, hhhhhhh 1111111, 1111111, 00000000, 00000000	65,534
/24	255.255.255.0	nnnnnnn . nnnnnnn . nnnnnnn . hhhhhhh 11111111 . 11111111 . 11111111 . 00000000	254

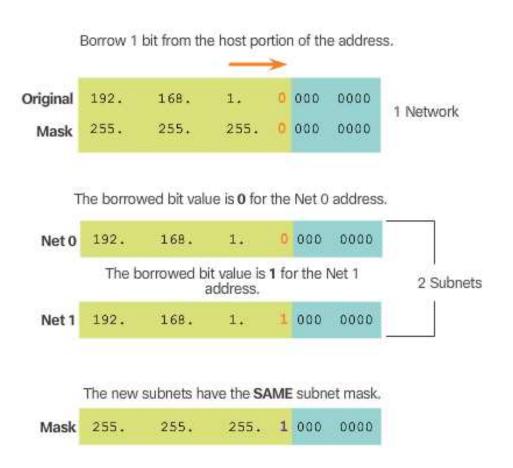
Subnetting on the Octet Boundary

Subnetting 10.x.0.0/16

Subnet Address (256 Possible Subnets)	Host Range (65,534 possible hosts per subnet)	Broadcast
<u>10.0</u> .0.0/16	<u>10.0</u> .0.1 - <u>10.0</u> .255.254	<u>10.0</u> .255.255
<u>10.2</u> .0.0/16	<u>10.2</u> .0.1 - <u>10.2</u> .255.254	<u>10.2</u> .255.255
<u>10.3</u> .0.0/16	<u>10.3</u> .0.1 - <u>10.3</u> .255.254	<u>10.3</u> .255.255
<u>10.4</u> .0.0/16	<u>10.4</u> .0.1 - <u>10.4</u> .255.254	<u>10.4</u> .255.255
<u>10.5</u> .0.0/16	<u>10.5</u> .0.1 - <u>10.5</u> .255.254	<u>10.5</u> .255.255
<u>10.6</u> .0.0/16	<u>10.6</u> .0.1 - <u>10.6</u> .255.254	<u>10.6</u> .255.255
<u>10.7</u> .0.0/16	<u>10.7</u> .0.1 - <u>10.7</u> .255.254	<u>10.7</u> .255.255
<u>10.255</u> .0.0/16	<u>10.255</u> .0.1 - <u>10.255</u> .255.254	<u>10.255</u> .255.255

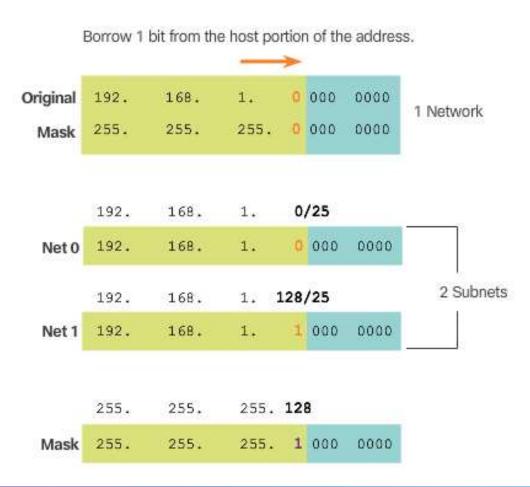
Subnetting 10.x.x.0/24

Subnet Address (65,536 Possible Subnets)	Host Range (254 possible hosts per subnet)	Broadcast
<u>10.0.0</u> .0/24	<u>10.0.0</u> .1 - <u>10.0.0</u> .254	<u>10.0.0</u> .255
<u>10.0.1</u> .0/24	<u>10.0.1</u> .1 - <u>10.0.1</u> .254	<u>10.0.1</u> .255
<u>10.0.2</u> .0/24	<u>10.0.2</u> .1 - <u>10.0.2</u> .254	<u>10.0.1</u> .255
<u>10.0.255</u> .0/24	<u>10.0.255</u> .1 - <u>10.0.255</u> .254	<u>10.0.255</u> .255
<u>10.1.0</u> .0/24	<u>10.1.0</u> .1 - <u>10.1.0</u> .254	<u>10.1.0</u> .255
<u>10.1.1</u> .0/24	<u>10.1.1</u> .1 - <u>10.1.1</u> .254	<u>1.1.1.0</u> .255
<u>10.1.2</u> .0/24	<u>10.1.2</u> .1 - <u>10.1.2</u> .254	<u>10.1.2.0</u> .255
<u>10.100.0</u> .0/24	<u>10.100.0</u> .1 - <u>10.100.0</u> .254	<u>10.100.0</u> .255
<u>10.255.255</u> .0/24	<u>10.255.255</u> .1 - <u>10.255.255</u> .254	<u>10.255.255</u> .255

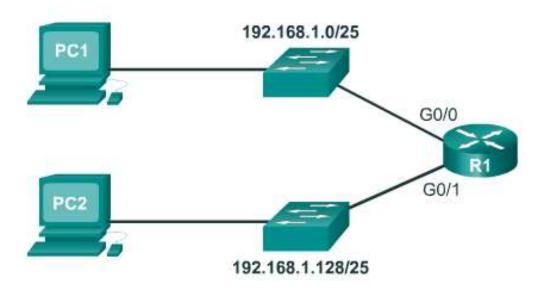

Classless Subnetting

- /25 Borrowing 1 bit from the fourth octet creates 2 subnets supporting 126 hosts each.
- /26 Borrowing 2 bits creates 4 subnets supporting 62 hosts each.
- /27– Borrowing 3 bits creates 8 subnets supporting 30 hosts each.
- /28 Borrowing 4 bits creates 16 subnets supporting 14 hosts each.
- /29 Borrowing 5 bits creates 32 subnets supporting 6 hosts each.
- /30– Borrowing 6 bits creates 64 subnets supporting 2 hosts each.

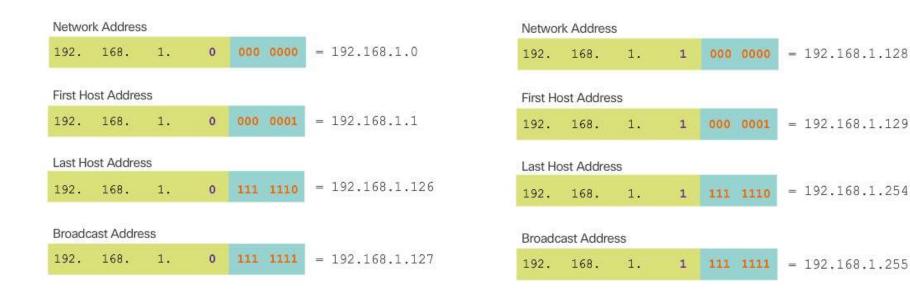
Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn , nnnnnnn , nnnnnnn , nhhhhhh 11111111 , 1111111 , 11111111 , <mark>1</mark> 0000000	2	126
/26	255.255.255.192	nnnnnnn . nnnnnnn . nnnnnnn . <mark>nn</mark> hhhhh 11111111 . 1111111 . 11111111 . <mark>11</mark> 000000	4	62
/27	255.255.255.224	nnnnnnn . nnnnnnn . nnnnnnn . nnnhhhhh 11111111 . 1111111 . 11111111 . 11100000	8	30
/28	255.255.255.240	nnnnnnn . nnnnnnn . nnnnnnn . nnnnhhhh 11111111 . 1111111 . 11111111 . 11110000	16	14
/29	255.255.255.248	nnnnnnn . nnnnnnn . nnnnnnn . nnnnhhh 11111111 . 1111111 . 11111111 . 11111000	32	6
/30	255.255.255.252	nnnnnnn . nnnnnnn . nnnnnnn . nnnnnhh 11111111 . 1111111 . 11111111 . 11111100	64	2


Classless Subnetting Example

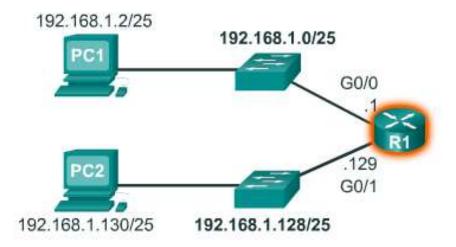
192.168.1.0/25 Network


Classless Subnetting Example (cont.)

Dotted Decimal Addresses


Creating 2 Subnets

/25 Subnetting Topology



Address Range for 192.168.1.0/25 Subnet

Address Range for 192.168.1.128/25 Subnet

Configure R1 Gigabit Interfaces

Assign a Valid Host IP Address

eneral	
You can get IP settings assigned a supports this capability. Otherwise administrator for the appropriate I	, you need to ask your network
💮 Obtain an IP address automa	tically
 Use the following IP address; 	
IP address:	192.168.1.130
Subnet mask:	255 . 255 . 255 . 128
Default gateway:	192.168.1.129
💮 Obtain DNS server address a	utomatically
OUse the following DNS server	addresses
Preferred DNS server:	2 . Y
Alternate DNS server:	
Validate settings upon exit	Advanced

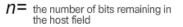
Subnetting Formulas

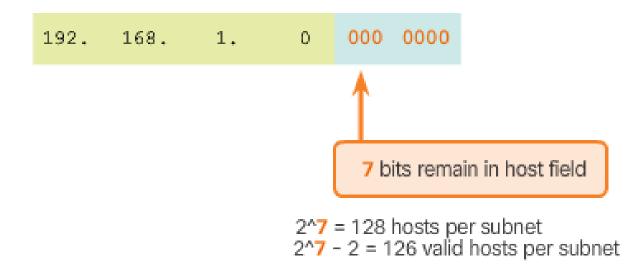
To calculate the number of subnets.

2^n

n= bits borrowed

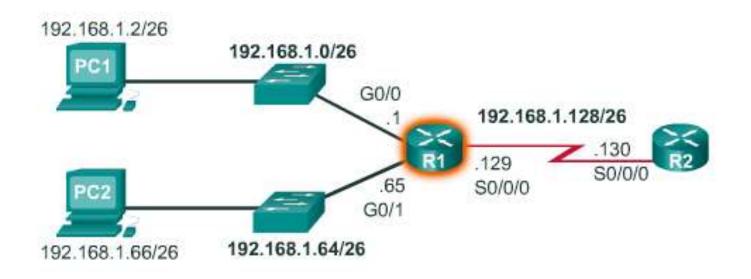
192 . 168 . 1 . 0

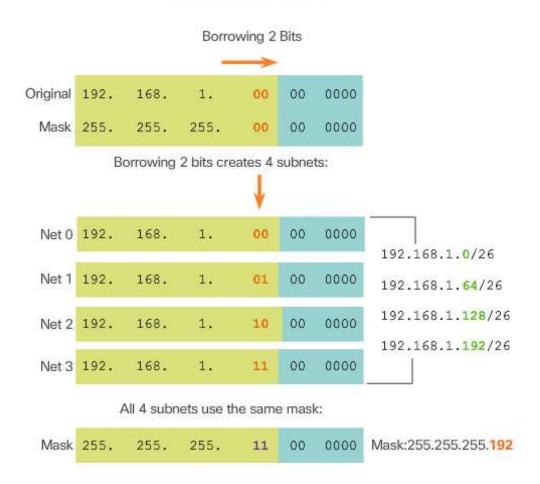

nnnnnnn.nnnnnn.hhhhhhhh


Borrowing 1 bit:	2^ 1 = 2 <
Borrowing 2 bits:	2^2 = 4 <
Borrowing 3 bits:	2^ <mark>3</mark> = 8 <
Borrowing 4 bits:	2^4 = 16 <
Borrowing 5 bits:	2^ 5 = 32 <
Borrowing 6 bits:	2^6 = 64 <

Subnetting Formulas (cont.)

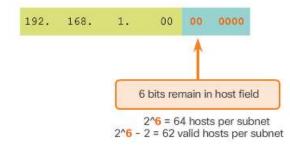
To calculate the number of hosts.





Creating 4 Subnets

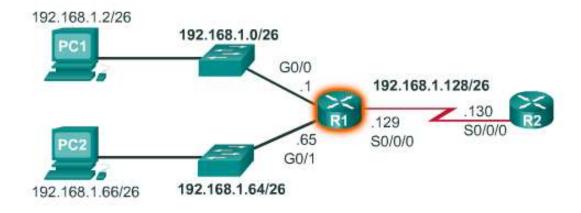
/26 Subnetting Topology



Borrowing 2 Bits

Calculate Number of Hosts

Address Range for 192.168.1.0/26 Subnet



Address Ranges Nets 0 - 2

	Network	192.	168.	1.	00	00	0000	192.168.1.0
Net 0	First	192.	168.	1.	00	00	0001	192.168.1.1
Neto	Last	192.	168.	1.	00	11	1110	192.168.1.62
	Broadcast	192.	168.	1.	00	11	1111	192.168.1.63
Net 1	Network	192.	168.	1.	01	00	0000	192.168.1.64
	First	192.	168.	1.	01	00	0001	192.168.1.65
Net	Last	192.	168.	1.	01	11	1110	192.168.1.126
	Broadcast	192.	168.	1.	01	11	1111	192.168.1.127
	Network	192.	168.	1.	10	00	0000	192.168.1.128
Net 2	First	192.	168.	1.	10	00	0001	192.168.1.129
	Last	192.	168.	1.	10	11	1110	192.168.1.190
	Broadcast	192.	168.	1.	10	11	1111	192.168.1.191

Configuring the Interfaces with /26 Addresses


```
R1 (config) #interface gigabitethernet 0/0

R1 (config-if) #ip address 192.168.1.1 255.255.255.192

R1 (config-if) #exit

R1 (config) #interface gigabitethernet 0/1

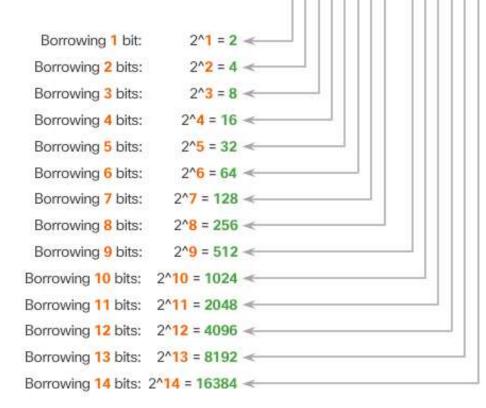
R1 (config-if) #ip address 192.168.1.65 255.255.255.192

R1 (config-if) #exit

R1 (config) #interface serial 0/0/0

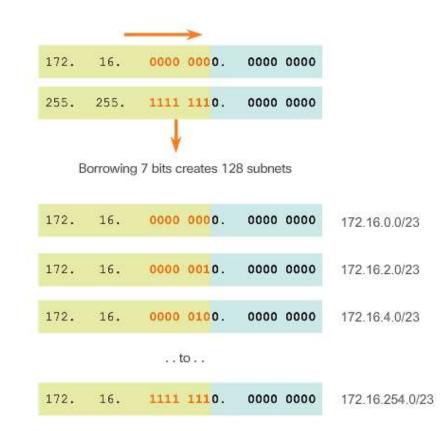
R1 (config-if) #ip address 192.168.1.129 255.255.255.192
```

Topic 8.1.3: Subnetting a /16 and a /8 Prefix

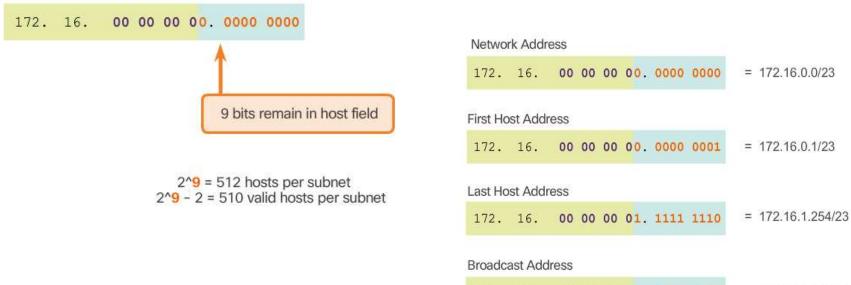

Creating Subnets with a /16 prefix

Prefix Length	Subnet Mask	Network Address (n = network, h = host)	# of subnets	# of hosts	Ê
/17	255.255.128.0	nnnnnnnn.nnnnnnnnnhhhhhhhhhhhhhhh 11111111.1111111.10000000.00000000	2	32564	
/18	255.255.192.0	nnnnnnnn.nnnnnnnnnnnhhhhhhhhhhhhhh 11111111.1111111.11000000.00000000	4	16282	
/19	255.255.224.0	nnnnnnnn.nnnnnnnnnnnhhhhhhhhhhhhh 11111111.1111111.11100000.00000000	8	8190	
/20	255.255.240.0	nnnnnnnn.nnnnnnnnnnnhhhh.hhhhhhhh 11111111.1111111.11110000.00000000	16	4094	=
/21	255.255.248.0	nnnnnnnn.nnnnnnnnnnnhhh.hhhhhhhh 11111111.1111111.11111000.00000000	32	2046	
/22	255.255.252.0	nnnnnnnn.nnnnnnnnnnnhh.hhhhhhhh 11111111.1111111.11111100.00000000	64	1022	
/23	255.255.254.0	nnnnnnnn.nnnnnnnnnnnh.hhhhhhhh 11111111.1111111.11111110.00000000	128	510	
/24	255.255.255.0	nnnnnnn.nnnnnnnnnnnn.hhhhhhhh 11111111.1111111.11111111.00000000	256	254	
/25	255.255.255.128	nnnnnnnn.nnnnnnnnnnnnnnnnnnnnhhhhhhh 11111111.1111111.111111111.10000000	512	126	
/26	255.255.255.192	nnnnnnnn.nnnnnnnnnnnnnnnnnnnnnhhhhhh 11111111.1111111.1111111111	1024	62	
/27	255.255.255.224	nnnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnnhhhhh 11111111.1111111.1111111111	2048	30	

Creating 100 Subnets with a /16 Network

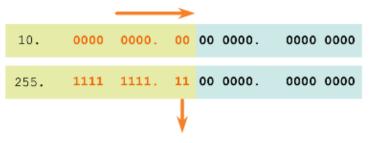

172 . 16 . 0 . 0

nnnnnnn.nnnnnn.hhhhhhhh.hhhhhhh


Creating 100 Subnets with a /16 Network (cont.)

Resulting /23 Subnets

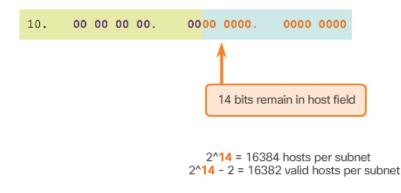
Calculating the Hosts


Hosts = 2ⁿ (where n = host bits remaining)

172.	16.	00	00	00	01.	1111	1111	=	172.16.1.255/23
------	-----	----	----	----	-----	------	------	---	-----------------

Address Range for 172.16.0.0/23 Subnet

Creating 1000 Subnets with a /8 Network



Borrowing 10 bits creates 1024 subnets

10.	0000	0000.	00 0	0000.	0000 0000	10.0.0/18
10.	0000	0000.	01 0	0000.	0000 0000	10.0.64.0/18
10.	0000	0000.	10 0	0000.	0000 0000	10.0.128.0/18
10.	0000	0000.	11 0	0000.	0000 0000	10.0.192.0/18
10.	0000	0001.	00 0	0000.	0000 0000	10.1.0.0/18
			to .			
10.	1111	1111.	10 0	0000.	0000 0000	10.255.128.0/18

Creating 1000 Subnets with a /8 Network (cont.)

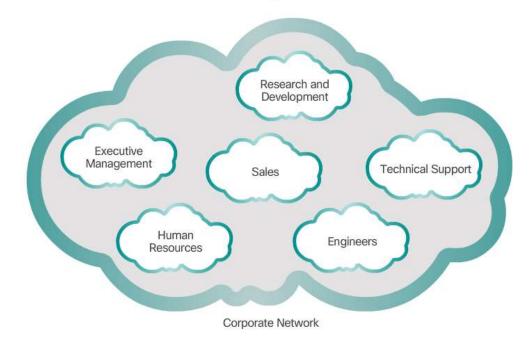
Calculating Hosts

Address Range for 10.0.0/18 Subnet

Netw	ork Addre	ess				
10.	00 00	00 00.	0000	0000.	0000 0000	= 10.0.0.0/18
First H	lost Addr	ess				
10.	00 00	00 00.	0000	0000.	0000 0001	= 10.0.0.1/18
Last F	lost Addr	ess				
10.	00 00	00 00.	0011	1111.	1111 1110	= 10.0.63.254/18
Broad	cast Addi	ress				
10.	00 00	00 00.	0011	1111.	1111 1111	= 10.0.63.255/18

Topic 8.1.4: Subnetting to Meet Requirements

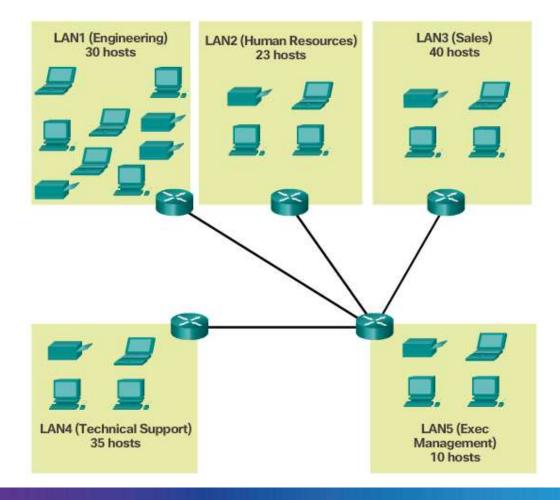
Subnetting Based on Host Requirements


Two considerations when planning subnets:

- The number of host addresses required for each network.
- The number of individual subnets needed.

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn, nnnnnnn, nnnnnnn, nhhhhhhh 11111111, 1111111, 11111111, 10000000	2	126
/26	255.255.255.192	nnnnnnn, nnnnnnn, nnnnnnn, nn hhhhh 11111111, 1111111, 11111111, 1 <mark>1</mark> 000000	4	62
/27	255.255.255.224	nnnnnnn . nnnnnnn . nnnnnnn . nnnhhhhh 11111111 . 1111111 . 11111111 . 11100000	8	30
/28	255.255.255.240	nnnnnnn, nnnnnnn, nnnnnnn, nnn hhhh 11111111, 11111111, 11111111, 11110000	16	14
/29	255.255.255.248	nnnnnnn, nnnnnnn, nnnnnnn, nnnn hhh 11111111, 1111111, 11111111, 1 1111 000	32	6
/30	255.255.255.252	nnnnnnn , nnnnnnn , nnnnnnn , nnnnnhh 11111111 , 11111111 , 11111111 , 11111100	64	2

The more bits borrowed to create subnets, the fewer host bits available.


Subnetting Based on Network Requirements

Subnets Based on Organizational Structure

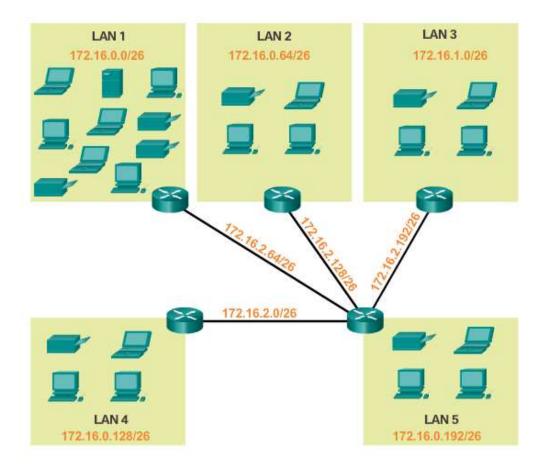
Network Requirement Example

Corporate Network

Network Requirement Example (cont.)

	Network Portion	Host Portion		Dotted Decimal
	10101100.00010000.000000	00.00	000000	172.16.0.0/22
0	10101100.00010000.000000	00.00	000000	172.16.0.0/26
1	10101100.00010000.000000	00.01	000000	172.16.0.64/26
2	10101100.00010000.000000	00.10	000000	172.16.0.128/26
3	10101100.00010000.000000	00.11	000000	172.16.0.192/26
4	10101100.00010000.000000	01.00	000000	172.16.1.0/26
5	10101100.00010000.000000	01.01	000000	172.16.1.64/26
6	10101100.00010000.000000	01.10	000000	172.16.1.128/26

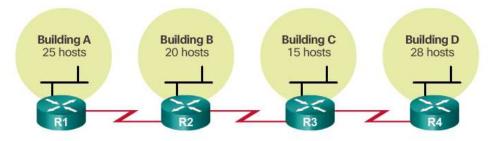
Nets 7 - 13 not shown

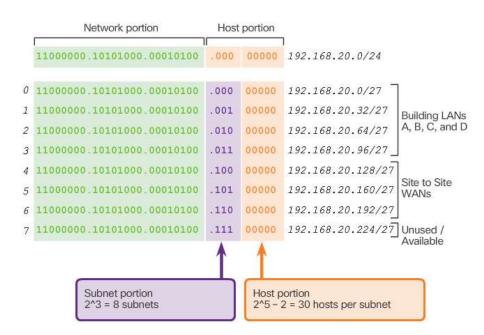

 14
 10101100.00010000.000000
 11.10
 000000
 172.16.3.128/26

 15
 10101100.00010000.000000
 11.11
 000000
 172.16.3.192/26

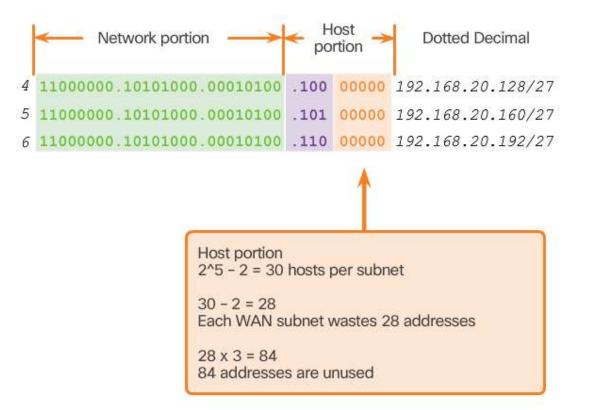
4 bits borrowed from host portion to create subnets

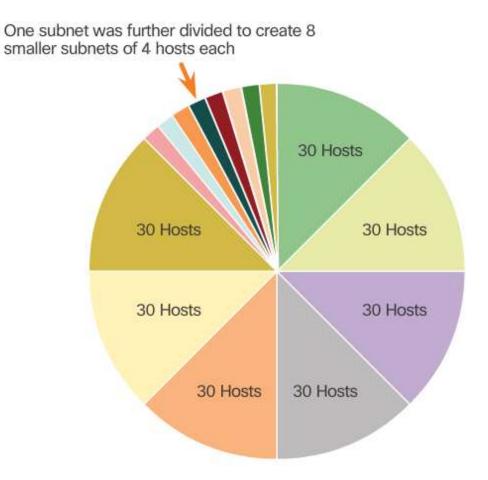
Network Requirement Example (cont.)


172.16.0.0/22

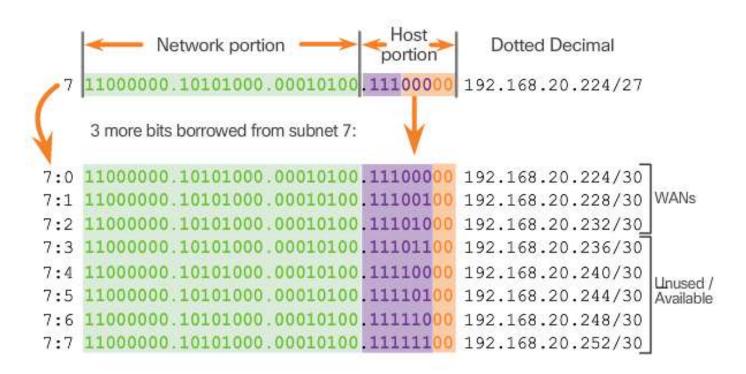


Topic 8.1.5: **Benefits of Variable Length Subnetting Masking**


Traditional Subnetting Wastes Addresses

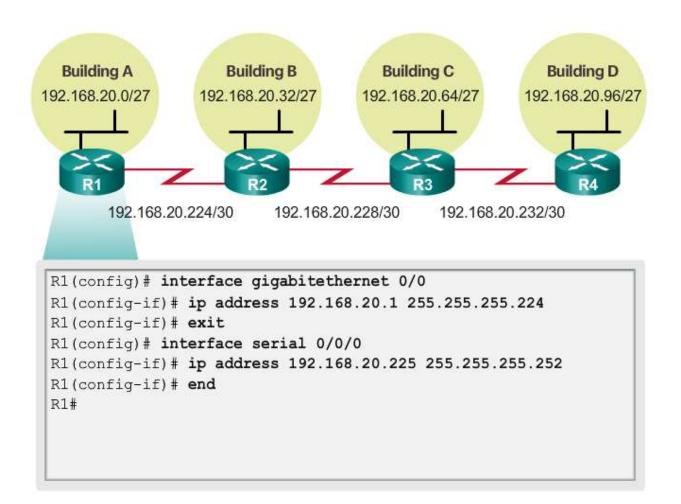

Traditional Subnetting Wastes Addresses (Cont.)

Unused Addresses on WAN Subnets


Variable Length Subnet Masks

Subnets of Varying Sizes

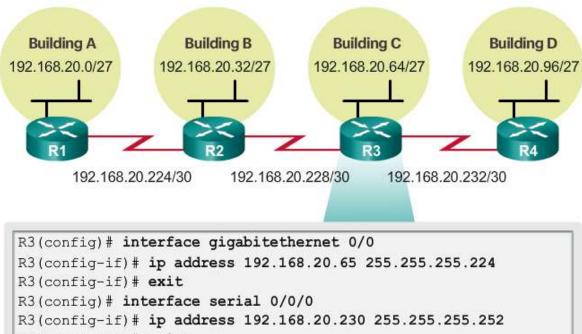
Basic VLSM


VLSM Subnetting Scheme

Subnetting a subnet


VLSM in **Practice**

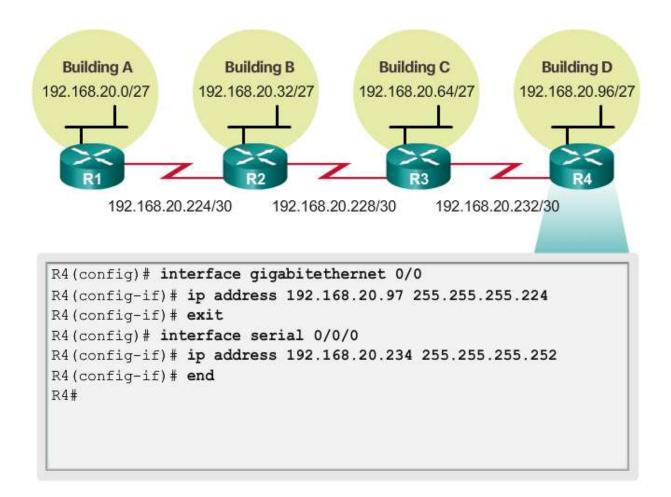
Network Topology: VLSM Subnets


VLSM in Practice (cont.)

Network Topology: VLSM Subnets

VLSM in Practice (cont.)

Network Topology: VLSM Subnets


```
R3(config-if)# exit
```

- R3(config) # interface serial 0/0/1
- R3(config)# ip address 192.168.20.233 255.255.255.252
- R3(config-if)# end

VLSM in Practice (Cont.)

Network Topology: VLSM Subnets

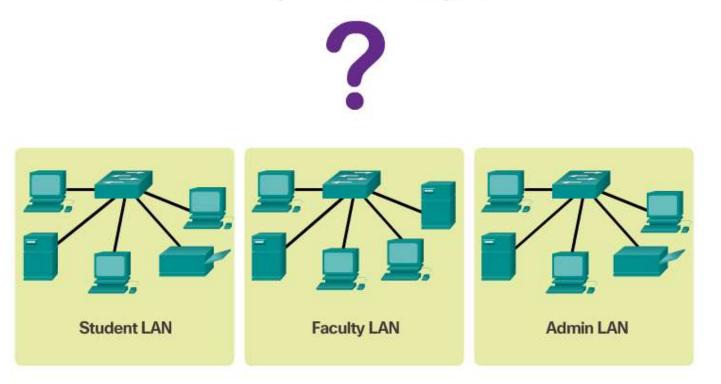
VLSM Chart

VLSM Subnetting of 192.168.20.0/24

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254
¥	¥	¥
	/30 Network	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Unused	.236	.237238
Unused	.240	.241242
Unused	.244	.245246
Unused	.248	.249250
Unused	.252	.253254

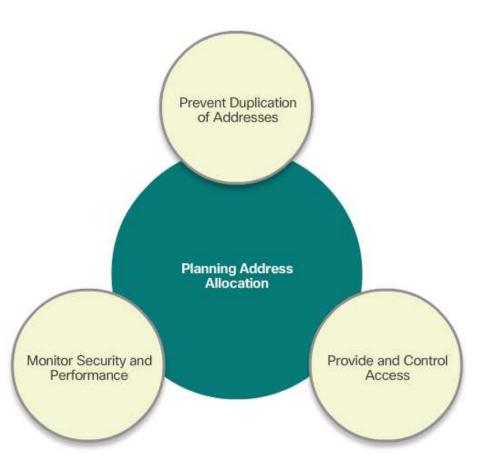
Section 8.2: Addressing Schemes

Upon completion of this section, you should be able to:


• Implement a VLSM addressing scheme.

Topic 8.2.1: Structured Design

Network Address Planning


Planning IP Address Assignment

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Planning to Address the Network

Primary Considerations when Planning Address Allocations

Assigning Addresses to Devices

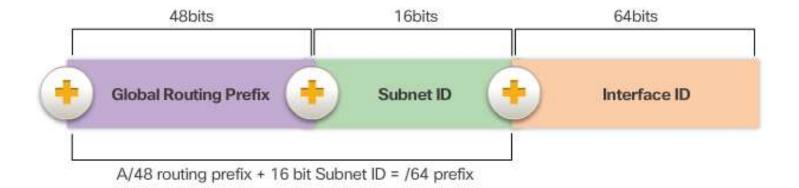
IP Address Ranges

Network: 192.168.1.0/24					
Use	First	Last			
Host Devices	.1	.229			
Servers	.230	.239			
Printers	.240	.249			
Intermediary Devices	.250	.253			
Gateway (router LAN interface)	.254				

Section 8.3: Design Considerations for IPv6

Upon completion of this section, you should be able to:

• Explain how to implement IPv6 address assignments in a business network.


Topic 8.3.1: Subnetting an IPv6 Network

The IPv6 Global Unicast Address

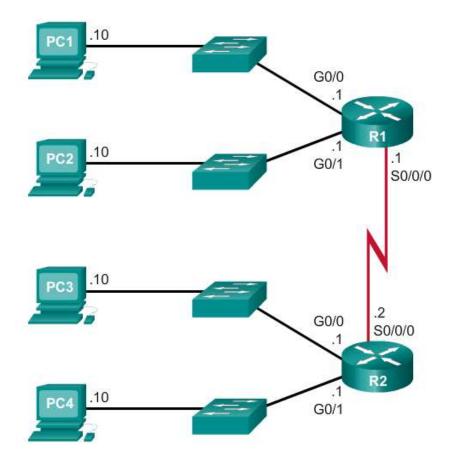
The IPv6 global unicast address normally consists of a /48 global routing prefix, a 16 bit subnet ID, and a 64 bit interface ID.

IPv6 Global Unicast Address Structure

Subnetting Using the Subnet ID

Address Block: 2001:0DB8:ACAD::/48

Increment subnet ID to create 65,536 subnets

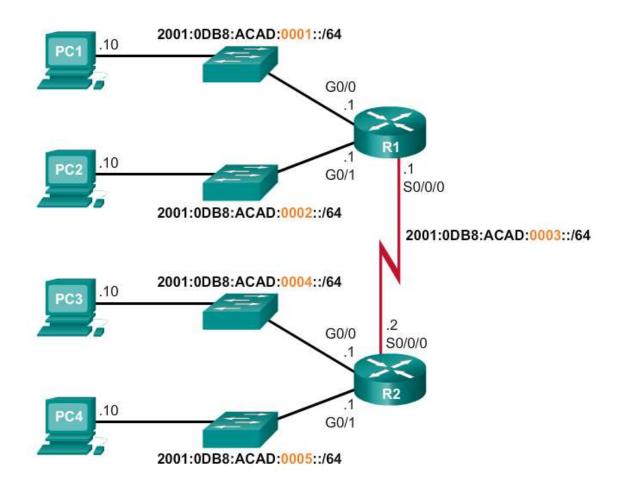

2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64

Subnets 13 - 65,534 not shown

2001:0DB8:ACAD:FFFF::/64

IPv6 Subnet Allocation

Example Topology


IPv6 Subnet Allocation (cont.)

Address Block: 2001:0DB8:ACAD::/48

5 subnets allocated from 65,536 available subnets 2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:FFFF::/64

IPv6 Subnet Allocation (cont.)

IPv6 Subnet Allocation

IPv6 Subnet Allocation (cont.)

IPv6 Address Configuration


```
R1(config)# interface gigabitethernet 0/0
R1(config-if)# ipv6 address 2001:db8:acad:1::1/64
R1(config-if)# exit
R1(config-if)# interface gigabitethernet 0/1
R1(config-if)# ipv6 address 2001:db8:acad:2::1/64
R1(config)# interface serial 0/0/0
R1(config-if)# ipv6 address 2001:db8:acad:3::1/64
R1(config-if)# end
R1#
```

Section 8.4: Summary

Chapter Objectives:

- Implement an IPv4 addressing scheme to enable end-to-end connectivity in a small to medium-sized business network.
- Given a set of requirements, implement a VLSM addressing scheme to provide connectivity to end users in a small to medium-sized network.
- Explain design considerations for implementing IPv6 in a business network.

Thank you.

CISCO Cisco Networking Academy Mind Wide Open