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Instead of “introduction”

“Treat others the way you want to be treated” !

4. A Balanced Scale Between
,Self” and ,,Others”

Moral Justice: Treat Others as You
Treat Yourself A
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Computers’ Logic Basics — An Introduction

VLSI (Very Large Scale Integration)

e It represents the manufacturing process of an IC (Integrated
Circuit) by combining thousands and hundreds of thousands of
logical gates (transistors) on a single silicon chip.

e The microprocessor Isa VLSI equipment
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Computers’ Logic Basics — An Introduction

ULSI (Ultra Large Scale Integration) — chips with more than 1 million
components

For example, one Intel® Xeon Core i7 E3 Broadwell has 3.2 billion
transistors on a die of only 133 mm?. A Core i9 (14" generation) has
between 20-25 billion transistors per chip.

Intel's supercomputing GPU, Ponte Vecchio, and Nvidia's GPUs are

among the leaders. As of Nvidia’s latest GPU, based on the Blackwell
architecture, has set new records in transistor count, boasting 208 billion

transistors per unit.
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Computers’ Logic Basics — An Introduction

In a A17 Pro chipset from an iPhone there are 19 billion
transistors and in an Apple M1 Ultra there are integrated more
than 114 billion transistors.

%M1
ULTRA
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The exponential growth in computing
power!

o The accelerating pace of change...
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Introduction

= Digital components
= Digital electronics (+5V, -5V), (0V, -5V),
(0V, +5V)

0 and 1 can be represented by +5V and -5V, or 0V and -5V,
or OV and +5V
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Introduction

Boole’s algebra
Basic operations:
e Disjunction (OR)
e Conjunction (AND)
e Negation (NOT)
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Truth tables — disjunction, conjunction, negation

q p AND q P q p ORq
T T T T T
F F T F T
T F = T T
F - F F F

q p AND ¢ D ~p

1 1

0 0 1 0

1 0

0 0 0 1



Boole’s algebra — fundamental theorems

1. Identities and null elements:
e There is element O (zero) as prime element with the
properties: XxM0=0 and xw0=x
e There is element 1 (one) denoted last element with the
properties: XxN1=x and xul=1

2. Uniqueness:
 Element 1 is unique
 Element 0 is unique

3. Complements - for every X in K there is a unique element X such
that: XNX=0

XuX=1
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Boole’s algebra — fundamental theorems
(cont.)

4. Double negation theorem: ; — X

5. Absorption theorems:
e  XU(XNY)=X
e XN(XUY)=X

6. De Morgan theorems:
XUY=XNY

XAY=XUY
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Boole’s algebra — fundamental theorems
(cont.)

7. ldempotency:
XUXU...UX = X
XOXM...NX = X

8. Commutativity, associativity and distributivity:
°*  XUY =Y WX

X Uy uz)=(x uy) uz

XUy N z)=(x uy) N (X L2z)

X N Y=Y N X

XNy Nz)=(X"Yy) Nz

X Ny U 2)=(X Ny) U(X N2)
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Boolean functions: existence and
unigueness

B, =10, 1}

f : B, — B, single variable function

f : B, xB, — B, double variable function

f: B,xB,x:-xB, > B,n variable function

nori
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Primary definitions

We call an elementary product/elementary sum a

product/sum of variables and/or their negations

We call disjunctive canonical form (DCF) of a

5-Nov-25

logical relation, an equivalent relation (with the
same truth value) which is a sum of elementary
products constructed with the same variables as the
Initial relation, each product containing all variables
(in normal or complementary form)



Primary definitions

We call conjunctive canonical form (CCF) of a

5-Nov-25

logical function, an equivalent relation (with the
same truth value) which is a product of
elementary sums constructed with the same
variables as the initial relation, each sum
containing all the possible variables (in normal
or complementary form)



DCF for one variable function

Let be f : B, — B, a boolean function with one variable and
a,b two boolean constants

f(x)=axu bx - disjunctive canonical form

f (x) = (aw x)(b U X) - conjunctive canonical form
These functions are uniquely determined
Replacing x =1, x =01in the relation of f(x):

{f(l)_aoluboi_aoluboO—auO—a

f(0)=ae0uUbe0=ae0uUbel=0Ub=0Db
DCF: f(x)= f()exu f(0)ex
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CCF for one variable function

f (x) = (a U x)(bu x) - conjunctive canonical form
Replacing x =1, x =01n the relation of f(x):

f(1)=(aul)e(bul)=(aul)e(b0)=1leb=b
f(0)=(au0)e(bu0)=(au0)e(bul)=ael=a
CCF: f(x)=(f(0)ux)e(f)uUX)
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Proof of existence (DCF)

Considering f (x) = f (1) e XU f (0) e x in DCF and
replacing x with O and 1.

f()=f@)elu f(0)el=f(l)elu f(0)e0= f(1)
{f (0)=f(1)e0uU f(0)e0= f(1)e0u f(0)el= f(0)
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Proof of existence (CCF)

Considering f(X)=(f(0)ux)e(f(1) ui) In CCF and
replacing x with valuesOand 1:

f(@)=(fO)ue(f@DuL)=(fO)U(f@Q)uU0)=1ef()=f(L)
£(0) = (f(0)U0)e(f(L)uU0)=(f(0)U0)(f(L)ul) = f(0)el= f(0)
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DCF for two variables function

Letbe f:B,xB, = B, Aboolean function with two variables
_and a,b,c,d boolean constants

f(x,y)=axyubxyucxyudxy-DCF
f(x,y)=(@uxuy)buxuy)cuxuy)duxuy)-CCF
Considering the DCF and replacing x =1, x=01n the relation of f(x).We will have
(a=f(1))
b= f(10)
le=f(01)
d = f(0,0)

DCF: f(x,y)= f(LDxyu f (L0O)xyu f(0.1)xyu f(0,0)xy

5-Nov-25



CCF for a function with two variables

f(x,y)=(@uxuy)buxuy)cuxuy)(duxuy)-CCF

Replacing iIn this equation with x=1,x=0 we have:

(a=1(0,0)

b=f(0]1)

c= f(10)

d= (L))

CCF: f(x,y)=(f(0,00uxuy)(f01)uUxuy)(f@o)uxuy)(feL)uxuy)
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Proof of existence for DCF

f(x,y)=f@xyu f(L0)xyu f(01)xyu f(0,0)xy-DCF

Considering the equation and replacing x=1,x=0,y=1,y=0 we get:

(x=y=1= f(11) = f (L) elelu f(L0)elelu f(01)elelu f(0,0)elel= f(L1)
x=1y=0= f(L0)=f(L1)ele0u f(L,0)ele0u f(01)ele0u f(0,0)ele0= f(L0)
x=0,y=1= f(0,1)= f(11)e0eluL f(L0)e0elu f(0,1)e0elu f(0,0)e0el= f(0,1)
Xx=y=0= f(0,0)=f(LL)e0e0U f(1,0)e0e0uL f(0,1)e0e0uL f(0,0)e0e0= f(0,0)
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Proof of existence for CCF

CCF: f(x,y)=(f(0,00UxuUy)(fODUXxUY)(fELO)UXxUY)FALYUXUY)

Considering the above equation and replacingx=1,x=0,y=1y=0 we get:

(x=y=1= f(L1)=(f(0,0)0ulul)(f(0.)UlU(fL0O)UIUL(fLY)uUlul) = f (L)
x=1y=0= f(10)=(f(0,0)ulU0)(f(0,1)UlU0)(f(L0)UluU0)(f@l)uUlu0)= f(L0)

<x:o,y:1:> f(0,) = (f(0,0)L0UD(f(0,1)UO0UL(f(L0)LOUD(f(@LL)UOUL) = f(0]1)

(x=y=0= f(0,0)=(f(0,00L0U0)(f(0)U0UO)(f(L0)UOUO)(f(LL)uU0uU0)=f(0,)
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Truth tables

We can associate any logic function with a truth table

f(x,y)=§§uxy

X |y | xey| xey |f(xy)f(xy)
0| 0| 1|01 1]0
0| 1] 01| 0101
110|001 0] 1
1 1] 0|1 110
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Truth tables (cont.)

Reciprocally, if we have a truth table we may determine the logic
function

From the truth table f =1for the following values for x and y :
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Truth tables (cont.)

Considering the valuesof x and y for f =0:

x=0,y=1
x=1y=0

or

x=0,y=0
x=0,y=0

f,(X, ) = (xUy)(xuy)
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Truth tables (cont.)

The functions must be equal :
f(X Y)=(XUY)(XUY)=XeXUXeyUyexuyey=

xeyuxey=f(x,Y)
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Logical functions representation

Canonical forms:

¢  Minterm form (DCF —disjunctive canonical form) — SUM of products —
variables or their complements in a minterm are connected by boolean
operation AND, and the minterms are connected by OR.

¢+ Maxterm form (CCF —conjunctive canonical form) — PRODUCT of
sums — variables or their complements in a maxterm are connected by
OR, and maxterms are connected by AND.

Another form of representation of a boolean function is the graphical one,
using Venn diagrams
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Venn diagram example

+ A Venn diagram is a schematic diagram used in logic theory to depict
collections of sets and represent their relationships.

gD

5-Nov-25



5-Nov-25

Minterms/maxterms for a function with two variables

Two variable function

X y Minterms | Maxterms
m; M;

0 0 my=xy | My=xuy

0 1 mlziy Mlzxuy

1 0 m,=xy | M,=xuy

1 1 m=xy | M,=xuy

31
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Minterms/maxterms for a function with three variables

Three variable function
X y Z Minterms Maxterms M.
m;
0 0 0 m, = Xyz M,=Xuyuz
0 0 1 m, = Xyz M, =xuyuz
0 1 0 m, = xyz M,=xuyuz
0 1 1 m, = Xyz M3:xu§u2
1 0 0 m, = Xyz M, =Xuyuz
1 0 1 m. = Xyz Msziuyug
1 1 0 m, = Xyz M, =XUyuUz
1 1 1 m, = Xyz M, =xuyuz

32



Minterms/maxterms - properties

Minterms are formed by the combination of the variables (or its’
complements) for which the function has the value of 1.
Maxterms are formed by the combination of the variables (or its’
complements) for which the function has the value of 0.

m. ZMi

M. =mi,Vi

5-Nov-25
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Minterms/maxterms - properties (cont.)

P1. The logic product between two terms m; and m; (i # j) of a logic
function of n variables has the value of zero:

m,-m; =0,Vi= ]

P2. The logic sum between two terms M; and M; (i # J) of a logic
function of n variables has the value of 1:

M, UM, =1Yi# ]

5-Nov-25
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Minterms/maxterms - properties (cont.)

P3. A logic function of n variables may be represented by a logic sum of
minterms m; (respectively, by a logic product of maxterms M;):

2" -1

f (e %,) = (@ -m)

2" 1

f (X X)) = [y UM,), ; € {01

5-Nov-25 35



Minterms/maxterms - properties (cont.)

P4. The complement of a logic function of n variables written in CCF
may be expressed uniquely using the relation:

f(Xl, X)=U(ai-mi)

and the complement of a Ioglcfunctlon of n variables

written in DCF may be expressed uniquely using the relation :
2" 1

f(X,...,X )= _ﬂ(Ei UM.), e, €01}
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Minterms/maxterms - properties (cont.)

P5. If a logic function of n variables written in DCF is containing 2"

distinct terms of n variables then it is equal with 1.
In the same conditions, if the function is written in CCF, then it is equal

with 0.
2" 1

f(X,....%,) = Jm, =1(DCF)

2"-1

f(X,.... %) = [ |M; =0 (CCF)
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Minterms/maxterms - properties (cont.)

P6. Any minterm m; of a logic function of n variables written in DCF is
equal with the logic product of 2"-1 M; terms, respectively any maxterm
M. of a logic function of n variables written in CCF is equal with the
logic sum of 2"-1 m; terms:

m =M, j=0...2"-1

J#i

M;={Jm,, j=0...2"-1

J#i

5-Nov-25 38



Logic functions of 2 variables

In the case of the 2 variable logic functions we may have the following
canonical forms:

f(x,y)=a,m,uam va,m,ua,m, (DCF)
F (X y)=(a, M)y WM, ) (e, W M,)(a; W M;)(CCF)

From here, it results 16 two-variable functions, in the minterm/maxterm
formats, considering the 16 possible combinations for (ay, 0, ay, 05 )
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2 variables logic functions

f, =0— ZERO (FALSE)

f, =xy—AND

f,=xy - INHIBITION | X inhibits y
f,=x—DENTITY  or TRANSFER
f,=xy - INHIBITION |y inhibits x
f.=y—IDENTITY or TRANSFER

f, =xy Uxy—XOR Exclusive OR | 1 if x<>y
f,=xuUy-0R

40
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2 variables logic functions (cont.)

fe=xUy=xy—NOR

fy =Xy Uxy —COINCIDENCE |1 if x=y
f,=y—NOT

f, =xUy— IMPLICATION

f, =x—NOT

f, =xUy—IMPLICATION

f, =xNy=xuUy—NAND

f. =1- TRUE

41



2 variables logic functions (cont.)

You may also check this website:

https://www.allaboutcircuits.com/technical-articles/16-
boolean-logic-functions-of-2-input-system/

5-Nov-25
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Logic function representation in DCF - example

Let be the function: f(x,y,2)=xuUyz

Put it in the DCF form.
f(x,y,2) = XY U Y)U YZ(X U X) = XY U XY U XYZ U XYZ =

XY(ZUZ)UXYZ UZ)UXYZUXYZ=XYZUXYZUXYZUXYZUXYZUXYZ =
m, +m, +m, + m, +m;
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