
11-Oct-25

IT Basics
3

Faculty of Cybernetics, Statistics and Economic Informatics –
BUES

Prof. Răzvan ZOTA, Ph.D.
zota@ase.ro

https://zota.ase.ro/itb

mailto:zota@ase.ro

11-Oct-25

Fixed point representation
 direct code (binary)
 inverse code (one’s complement)
 complement code (two’s complement)

Floating point representation
 Single precision (32 bits used)
 Double precision (64 bits used)
 Extended format (80 bits used)

Numbers’ representation in a computer

11-Oct-25

Fixed point representation
 direct code (binary)
 inverse code (one’s complement)
 complement code (two’s complement)

Fixed point representation

11-Oct-25

Direct code

R = 𝑎𝑎𝑛𝑛 ∗ 2𝑛𝑛 + ∑𝑖𝑖=0𝑛𝑛−1 𝑎𝑎𝑖𝑖2𝑖𝑖

𝑎𝑎𝑛𝑛 − sign bit

𝑎𝑎𝑛𝑛=0 if R>=0

𝑎𝑎𝑛𝑛=1 if R<0

Presenter
Presentation Notes
10 decimal=1010 nibble
Byte: 00001010
[-128;127] signed numbers
Unsigned numbers: [0;255] (256 values)

11-Oct-25

Inverse code (1’s complement)

m
CD

ii

n

mi

i
i

n

n

mi

i
i

n

CI

R

nmiaa

Rifa

Rifa
R

−+

−

−=

−

−=

−−=

−−=∀−=










<•+•

≥•+•
=

∑

∑

22R

:methodn Calculatio
codedirect

in R of digitsbinary theare a where,1,,1

0,221

0,220

1n
CI

i

1

1

Presenter
Presentation Notes
-11=11110100
 11=00001011

100000000-
 00001011-
 1

11-Oct-25

Complementary code

CD

m
n

mi

i
i

n

mi

i
i

n

mi

i
i

n

n

mi

i
i

n

CC

R

n method:Calculatio

aa

Rifa

Rifa
R

−=

=+•=•










<•+•

≥•+•
=

+

−
−

−=

−

−=

−

−=

−

−=

∑∑

∑

∑

1n
CC

iii

11

1

1

2R

codedirect in R of

 digitsbinary theare a and 1-aa where,222

0,221

0,220

Presenter
Presentation Notes
-11=(CC)=

11-Oct-25

Addition/subtraction in fixed point

 Addition in DC, IC and CC
 Subtraction in IC and CC (Ex. 93-27 in IC and CC)

11-Oct-25

Length, Precision and Range for Fixed-Point
representation

Type Length Precision Values range
(binary)

Values range (decimal)

Word
format

16 15 -215 – 215-1 [-32768 ; 32767]

Short
format

32 31 -231 – 231-1 [-2.14*109 ; 2.14*109

Long
format

64 63 -263 – 263-1 -9.22*1018 – 9.22*1018

Floating Point Representation

 This representation has 3 parts:

 Sign bit

 Exponent (characteristic or scale)

 Fraction (mantissa or significand)

 From the 1990’s, the main used standard for FPR is
represented by IEEE 754 (published in 1985)

 IEEE - Institute of Electrical and Electronics Engineers

11-Oct-25

Normalized Numbers

 In most of the cases, the numbers are represented in normalized
form. Except for zero, the significand is always made of an
integer of 1 and the following fraction: 1.fffffff

 Numbers are represented as:
+/- 1.fff…fff *2exp

S=0 or S=1
CAR = exp + K (K= biasing constant)
Fraction = fff…fff

S CAR Fraction

11-Oct-25

Numbers and special values

 Signed Zeros – Zero value can be represented as +0 or –0 depending
on the sign bit. Both representations are equal as value. The sign of a
zero result depends on the operation being performed and the
rounding process being used.

 Finite numbers - normalized and denormalized.
 +∞, -∞ are representing the maximum/minimum positive/negative

value for real numbers for floating point representation. Infinite
value is always represented by a fraction of zero and the maximum
exponent for that format (255 for example, in single precision
format). Exceptions are generated when an infinite value is used as a
source operand and leads to an invalid operation.

 NaN values (Not a Number) – these are not real numbers. Their
representation is made by using a maximum accepted exponent and a
non-zero fraction; the sign bit is ignored.

11-Oct-25

Normalized and denormalized numbers

 Non-zero, finite numbers are divided into two classes:
normalized and denormalized. The normalized finite numbers
are all the non-zero finite values that can be encoded in a
normalized real number format between 0 and ∞. This group
includes all the numbers with biased exponents between 1 and
254 (unbiased, the exponent range is between –126 and 127)

 In the case when floating point numbers become very close to
zero, the normalized number format cannot be used to represent
the numbers, because the range of the exponent is not large
enough to compensate for shifting the binary point to the right to
eliminate leading zeros.

11-Oct-25

Normalized and denormalized numbers

 When the biased exponent is 0, smaller numbers can be
represented by making the integer bit of the significand zero.
The numbers from this range are called denormalized (tiny)
numbers. This denormalization process leads to the loss of
precision (the number of significand bits in the fraction is
reduced by the leading zeros).

 When the normalized floating-points calculations are made, the
IA-32 processor normally operates on normalized numbers and
produces normalized results. Denormalized numbers are
representing an underflow condition. A denormalized number is
computed by a technique called gradual underflow.

11-Oct-25

Real Numbers and NaN

1 0 0

0 0 0

-0

+0

1 0 0.fff- Denormalized finite

0 0 0.fff+ Denormalized finite

1 1…254 Any value- Normalized finite

0 1…254 Any value+ Normalized finite

11-Oct-25

Real Numbers and NaN (cont.)

1 255 0- ∞
0 255 0+ ∞

x 255 1.0ff- SNaN

x 255 1.0ff+ SNaN

x 255 1.1ff- QNaN

x 255 1.1ff+ QNaN

11-Oct-25

Denormalization process

Operation Sign Exponent Significand

True result 0 -129 1.010111000...000

Denormalize 0 -128 0.1010111000...000

Denormalize 0 -127 0.01010111000...000

Denormalize 0 -126 0.001010111000...000

Result in
denormalized
format

0 -126 0.001010111000...000

11-Oct-25

NaN values

 The IEEE standard defines two classes of NaNs:
 QNaN (quiet NaN) – the MSB is set
 SNaN (signaling NaN) – the MSB is zero.

 QNaNs are propagating through the arithmetic operations
without indicating an exception

 SNaNs are signaling an exception (non-valid operation)
when they are operand in arithmetic operations

11-Oct-25

Special operations

Operation Result

n / ±∞ 0

± ∞ * ± ∞ ± ∞

±Non-zero val / 0 ± ∞

∞ + ∞ ∞

±0 / ±0 NaN

∞ - ∞ NaN

± ∞ / ± ∞ NaN

± ∞ * 0 NaN

11-Oct-25

Real Data Types

S CAR Fraction
63 62 52 51 0

Double precision

Single precision

S CAR Fraction
31 30 23 22 0

CAR = exp + 127

CAR = exp + 1023

11-Oct-25

Real Data Types (cont.)

Extended real format

S CAR Fraction
79 78 64 63 62 0

CAR = exp + 16383
integer

If n represents the number of bits for the characteristic the we may
use the formula:

CAR = exp + 2n-1 - 1

Presenter
Presentation Notes
1.fffff
0.fffffff

11-Oct-25

Length, precision and range for real numbers

Type Length Precision Value range
(binary)

Value range (decimal)

Single
precision

32 24 2-126 - 2127 1.18*10-38 – 3.40*1038

Double
precision

64 53 2-1022 - 21023 2.23*10-308 – 1.79*10308

Extended
real

80 64 2-16382 - 216383 3.37*10-4932 – 1.18*104932

11-Oct-25

Examples

1. Which is the decimal value for the number (represented in
single precision format):

1 10000001 01000000000000000000000

The characteristic is 129, so the real exponent is 129 – 127 = 2
Fraction is .012 = .25, so will have the value of 1.25.
The number is negative (the sign bit is 1)
The result: -1.25 x 22 = -5

11-Oct-25

Examples

2. Which is the representation of 16.625 in single precision format ?
We represent the number in normalized format:
16 = 100002

.625 = .1012

16.625 = 10000.101= 1.0000101 * 24

CAR = 4 + 127 = 131
In conclusion, the representation is the following:
0 10000011 00001010000000000000000

Presenter
Presentation Notes
.625*2=1.25
.25*2=0.50
0.5*2=1.0

11-Oct-25

BCD format representation

BCD (Binary Coded Decimal) Format:
• Packed BCD
• Unpacked BCD
In packed BCD there are representing two decimal digits using a
byte (the LSD on 0-3 bits and the MSD on 4-7 bits):

1 0 0 1 0 1 1 0
7 4 3 0

In unpacked BCD a digit is represented using a byte in
bits 0-3, and the bits 4-7 are containing the value Fh:

1 1 1 1 0 1 1 0
7 4 3 0

96 =

6 =

11-Oct-25

BCD representation for Intel

Type Length Precision Value domain (decimal)

Packed
BCD

80 18
(decimal
digits)

(-1018+1) – (1018-1)

S x
79 78 72 71 0

D17 D16 D0D1D15

Presenter
Presentation Notes
963

0 xxxxxxx 0000000000..000001001 0110 0011

11-Oct-25

 Addition in BCD – normally addition in binary, for each
group of 4 binary digits, considering the following cases.
If a and b are the two decimal digits coded in binary, the
result is:
 Correct, if 0000 < c <=1001
 Wrong, and we add 0110 in both these two cases:

 1010 <= c <=1111 – it doesn’t match to a decimal digit
(addition of 0110 will determine a transport to the next
level)

 0000 <= c < 1001, with the appearance of the 5th digit, 1,
which represents a transport for the next group of 4
binary digits

Addition in BCD

11-Oct-25

Addition example in BCD

Presenter
Presentation Notes
10011-
 0100
====
1 1 1 1-
0 1 1 0
====
1 0 0 1

11-Oct-25

 Subtraction in BCD – normally subtraction in binary, for
each group of 4 binary digits, considering the following
cases:

 If a and b are the two decimal digits coded in binary, the
result c = a - b is:
 correct, if a >= b
 if a < b, we have to borrow 1 from the next group of 4

binary digits, we make the subtraction, then we
subtract the correction value of 0110.

Subtraction in BCD

	�IT Basics�3
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Addition/subtraction in fixed point
	Length, Precision and Range for Fixed-Point representation
	Floating Point Representation
	Normalized Numbers
	Numbers and special values
	Normalized and denormalized numbers
	Normalized and denormalized numbers
	Real Numbers and NaN
	Slide Number 15
	Denormalization process
	NaN values
	Special operations
	Real Data Types
	Real Data Types (cont.)
	Length, precision and range for real numbers
	Examples
	Examples
	BCD format representation
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

