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Fixed point representation
 direct code (binary)
 inverse code (one’s complement)
 complement code (two’s complement)

Floating point representation
 Single precision (32 bits used)
 Double precision (64 bits used)
 Extended format (80 bits used)

Numbers’ representation in a computer
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Fixed point representation
 direct code (binary)
 inverse code (one’s complement)
 complement code (two’s complement)

Fixed point representation
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Direct code

R = 𝑎𝑎𝑛𝑛 ∗ 2𝑛𝑛 + ∑𝑖𝑖=0𝑛𝑛−1 𝑎𝑎𝑖𝑖2𝑖𝑖

𝑎𝑎𝑛𝑛 − sign bit

𝑎𝑎𝑛𝑛=0 if R>=0

𝑎𝑎𝑛𝑛=1 if R<0

Presenter
Presentation Notes
10 decimal=1010 nibble
Byte: 00001010
[-128;127] signed numbers
Unsigned numbers: [0;255] (256 values)
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Inverse code (1’s complement)
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Presentation Notes
-11=11110100
  11=00001011

100000000-
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               1
---------------




11-Oct-25

Complementary code
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Addition/subtraction in fixed point

 Addition in DC, IC and CC
 Subtraction in IC and CC (Ex. 93-27 in IC and CC)
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Length, Precision and Range for Fixed-Point 
representation

Type Length Precision Values range 
(binary)

Values range (decimal)

Word 
format

16 15 -215 – 215-1 [-32768 ; 32767]

Short 
format

32 31 -231 – 231-1 [-2.14*109 ; 2.14*109

Long 
format

64 63 -263 – 263-1 -9.22*1018 – 9.22*1018



Floating Point Representation

 This representation has 3 parts:

 Sign bit

 Exponent (characteristic or scale)

 Fraction (mantissa or significand)

 From the 1990’s, the main used standard for FPR is 
represented by IEEE 754 (published in 1985)

 IEEE - Institute of Electrical and Electronics Engineers
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Normalized Numbers

 In most of the cases, the numbers are represented in normalized 
form. Except for zero, the significand is always made of an 
integer of 1 and the following fraction: 1.fffffff

 Numbers are represented as:
+/- 1.fff…fff *2exp

S=0 or S=1
CAR = exp + K (K= biasing constant)
Fraction = fff…fff

S CAR Fraction
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Numbers and special values

 Signed Zeros – Zero value can be represented as +0 or –0 depending 
on the sign bit. Both representations are equal as value. The sign of a 
zero result depends on the operation being performed and the 
rounding process being used. 

 Finite numbers - normalized and denormalized.
 +∞, -∞ are representing the maximum/minimum positive/negative 

value for real numbers for floating point representation. Infinite 
value is always represented by a fraction of zero and the maximum 
exponent for that format (255 for example, in single precision 
format). Exceptions are generated when an infinite value is used as a 
source operand and leads to an invalid operation.

 NaN values (Not a Number) – these are not real numbers. Their 
representation is made by using a maximum accepted exponent and a 
non-zero fraction; the sign bit is ignored. 
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Normalized and denormalized numbers

 Non-zero, finite numbers are divided into two classes: 
normalized and denormalized. The normalized finite numbers 
are all the non-zero finite values that can be encoded in a 
normalized real number format between 0 and ∞. This group 
includes all the numbers with biased exponents between 1 and 
254 (unbiased, the exponent range is between –126 and 127)

 In the case when floating point numbers become very close to 
zero, the normalized number format cannot be used to represent 
the numbers, because the range of the exponent is not large 
enough to compensate for shifting the binary point to the right to 
eliminate leading zeros. 



11-Oct-25

Normalized and denormalized numbers

 When the biased exponent is 0, smaller numbers can be 
represented by making the integer bit of the significand zero. 
The numbers from this range are called denormalized (tiny) 
numbers. This denormalization process leads to the loss of 
precision (the number of significand bits in the fraction is 
reduced by the leading zeros). 

 When the normalized floating-points calculations are made, the 
IA-32 processor normally operates on normalized numbers and 
produces normalized results. Denormalized numbers are 
representing an underflow condition. A denormalized number is 
computed by a technique called gradual underflow.  
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Real Numbers and NaN

1 0 0

0 0 0

-0

+0

1 0 0.fff- Denormalized finite

0 0 0.fff+ Denormalized finite

1 1…254 Any value- Normalized finite

0 1…254 Any value+ Normalized finite
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Real Numbers and NaN (cont.)

1 255 0- ∞
0 255 0+ ∞

x 255 1.0ff- SNaN

x 255 1.0ff+ SNaN

x 255 1.1ff- QNaN

x 255 1.1ff+ QNaN
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Denormalization process

Operation Sign Exponent Significand

True result 0 -129 1.010111000...000

Denormalize 0 -128 0.1010111000...000

Denormalize 0 -127 0.01010111000...000

Denormalize 0 -126 0.001010111000...000

Result in 
denormalized 
format

0 -126 0.001010111000...000
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NaN values

 The IEEE standard defines two classes of NaNs:
 QNaN (quiet NaN) – the MSB is set
 SNaN (signaling NaN) – the MSB is zero.

 QNaNs are propagating through the arithmetic operations 
without indicating an exception

 SNaNs are signaling an exception (non-valid operation) 
when they are operand in arithmetic operations
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Special operations

Operation Result 

n / ±∞ 0 

± ∞ * ± ∞ ± ∞

±Non-zero val / 0 ± ∞

∞ + ∞ ∞

±0 / ±0 NaN

∞ - ∞ NaN

± ∞ / ± ∞ NaN

± ∞ * 0 NaN
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Real Data Types

S CAR Fraction
63 62 52 51 0

Double precision

Single precision

S CAR Fraction
31 30 23 22 0

CAR = exp + 127

CAR = exp + 1023
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Real Data Types (cont.)

Extended real format

S CAR Fraction
79 78 64 63 62 0

CAR = exp + 16383
integer

If n represents the number of bits for the characteristic the we may 
use the formula:

CAR = exp + 2n-1 - 1

Presenter
Presentation Notes
1.fffff
0.fffffff
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Length, precision and range for real numbers

Type Length Precision Value range 
(binary)

Value range (decimal)

Single 
precision

32 24 2-126 - 2127 1.18*10-38 – 3.40*1038

Double 
precision

64 53 2-1022 - 21023 2.23*10-308 – 1.79*10308

Extended 
real

80 64 2-16382 - 216383 3.37*10-4932 – 1.18*104932
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Examples

1. Which is the decimal value for the number (represented in 
single precision format):

1 10000001 01000000000000000000000

The characteristic is 129, so the real exponent is 129 – 127 = 2
Fraction is .012 = .25, so will have the value of 1.25.
The number is negative (the sign bit is 1)
The result: -1.25 x 22 = -5
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Examples

2. Which is the representation of 16.625 in single precision format ?
We represent the number in normalized format:
16 = 100002

.625 = .1012

16.625 = 10000.101= 1.0000101 * 24

CAR = 4 + 127 = 131
In conclusion, the representation is the following:
0 10000011 00001010000000000000000

Presenter
Presentation Notes
.625*2=1.25
.25*2=0.50
0.5*2=1.0
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BCD format representation

BCD (Binary Coded Decimal) Format: 
• Packed BCD
• Unpacked BCD
In packed BCD there are representing two decimal digits using a 
byte (the LSD on 0-3 bits and the MSD on 4-7 bits):

1 0 0 1 0 1 1 0
7          4  3           0

In unpacked BCD a digit is represented using a byte in 
bits 0-3, and the bits 4-7 are containing the value Fh:

1 1 1 1 0 1 1 0
7          4  3          0

96 =

6 =
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BCD representation for Intel

Type Length Precision Value domain (decimal)

Packed 
BCD

80 18 
(decimal 
digits)

(-1018+1) – (1018-1)

S x
79 78 72 71 0

D17 D16 D0D1D15

Presenter
Presentation Notes
963

0 xxxxxxx 0000000000..000001001 0110 0011
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 Addition in BCD – normally addition in binary, for each 
group of 4 binary digits, considering the following cases. 
If a and b are the two decimal digits coded in binary, the 
result is:
 Correct, if 0000 < c <=1001
 Wrong, and we add 0110 in both these two cases:

 1010 <= c <=1111 – it doesn’t match to a decimal digit 
(addition of 0110 will determine a transport to the next 
level)

 0000 <= c < 1001, with the appearance of the 5th digit, 1,
which represents a transport for the next group of 4 
binary digits

Addition in BCD
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Addition example in BCD

Presenter
Presentation Notes
10011-
  0100
====
1 1 1 1-
0 1 1 0
====
1 0 0 1
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 Subtraction in BCD – normally subtraction in binary, for 
each group of 4 binary digits, considering the following 
cases:

 If a and b are the two decimal digits coded in binary, the 
result c = a - b is:
 correct, if a >= b
 if a < b, we have to borrow 1 from the next group of 4 

binary digits, we make the subtraction, then we 
subtract the correction value of 0110.

Subtraction in BCD
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