
Introduction to assembly language

The following is an introduction to the iAPx86 family of microprocessors
that form the basis of IBM PC computers, starting with the 8088 and 8086
processors, continuing with the 80286, 80386, 80486, Pentium, and so on. The
8086 processor is, in fact, the basis of what is known briefly as the x86
microprocessor family. This is why this architecture (8086) will be referred to
hereafter.

Basic architectural elements of the microprocessor

Figure 1. General purpose registers - accumulator,
base index, counter and data

Microprocessor registers

The microprocessor registers are special memory locations located directly
on the chip, making them the fastest type of memory. Another special thing about
registers is that each of them has a specific purpose, providing some special,
unique functionality. There are four main register categories: general purpose
registers, flags register, segment registers and instruction pointer register.

General-purpose registers

General-purpose registers (see Figure 1 and Figure 2) are involved in the
operation of most instructions, as source or destination operands for
computations, data copies, pointers to memory locations or counting functions.
Each of the 8 general purpose registers AX, BX, CX, DX, SP, BP, DI, SI are
16-bit registers for the 8086 microprocessor, and since the 80386 processor they
have become 32-bit registers, called EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI
respectively. Furthermore, the least significant 8 bits of the AX, BX, CX, DX
registers form respectively the AL, BL, CL, DL registers (L stands for Low) and
the most significant 8 bits of the same registers form the AH, BH, CH, DH
registers (H stands for High) (Figure 1).

Figure 2. General purpose index and pointer rulers

We will focus next on general 16-bit registers; each of these can store a
16-bit value, can be used to store a value in memory, or can be used for arithmetic
and logic operations. For example, the following instructions:

...
MOV BX, 2
MOV DX, 3
ADD BX, DX
...

loads value 2 into the BX register, value 3 into the DX register, adds the
two values and the result (5) is stored in the BX register. In the above example we

can use any of the general purpose registers instead of the BX and DX registers.
Apart from the property of storing values and using them as source or destination
operands for data manipulation instructions, each of the 8 general purpose
registers has its own "personality". We will see below what the specific
characteristics of each of the general purpose registers are.

AX Registry (EAX for 32-bit)

The AX register (EAX) is also referred to as the accumulator register and is
the main general purpose register used for arithmetic, logic and data movement
operations. Multiplication and division operations always involve the AX register.
Some of the instructions are optimized to execute faster when AX is used. In
addition, the AX register is also used for all data transfers to/from the I/O ports. It
can be accessed on 8, 16 or 32 bit portions and is referred to as AL (least
significant 8 bits of AX), AH (most significant 8 bits of AX), AX (16 bits) or
EAX (32 bits). We present below some other examples of instructions using the
AX register. Note that data transfers are done for Intel instructions (also called
mnemonics) from right to left, just the opposite of Motorola (we will see another
similar example when writing data to memory in a different format in Motorola
than in Intel), where the transfer is done from left to right.

Instruction: MOV AX, 1234H loads the value 1234H (4660 in decimal)
into the AX accumulator register. As I said, the least significant 8 bits of the AX
register are identified as AL (A-Low) and the most significant 8 bits of the same
register are identified as AH (A-High). This is used to work with single-byte data,
allowing the AX register to be used in place of two separate registers (AH and
AL). The same rule applies to the general purpose registers BX, CX, DX. The
following three instructions set the AH register to 1, increment this value by 1 and
then copy it to the AL register:

MOV AH, 1
INC AH
MOV AL,AH

The final value of register AX will be 22 (AH = AL = 2).

BX register (EBX for 32-bit)

The BX (Base) register, or base register, can store addresses to reference
various data structures, such as vectors stored in memory. A 16-bit represented
value stored in the BX register can be used as a portion of the address of a
memory location to be accessed. For example, the following instruction loads the
AH register with the value in memory at address 21.

MOV AX, 0
MOV DS, AX
MOV BX, 21
MOV AH, [BX]

Note that we loaded the value 0 into the DS register before accessing the
memory location referenced by the BX register. This is due to memory
segmentation (segmentation discussed in more detail in the section on segment
registers); by default, when used as a memory pointer, BX references the DS
segment register relatively (the address it references is an address relative to the
segment address contained in the DS register).

CX Registry (ECX for 32-bit)

The specialization of the CX (Counter) register is counting; therefore, it is
also called the counter register. The CX register also plays a special role when the
LOOP instruction is used. The counter role of the CX register is immediately
apparent from the following example:

MOV CX, 5
start:
...
<instructions to be executed 5 times>
...
SUB CX, 1
JNZ start

Since the initial value of CX is 5, the instructions between the start label
and the JNZ instruction will execute 5 times (until the CX register becomes 0).
The SUB CX, 1 instruction decrements the CX register by 1 and the JNZ start
instruction causes the jump back to the start label if CX is not 0. In the
microprocessor language there is also a special instruction related to cycling. This
is the LOOP instruction, which is used in combination with the CX register. The
following lines of code are equivalent to the previous ones, but here the LOOP
instruction is used:

MOV CX, 5
start:
...
<instructions to be executed 5 times>
...
LOOP start

Note that the LOOP instruction is used in place of the two previous SUB
and JNZ instructions; LOOP automatically decrements the CX register by 1 and
executes the jump to the specified label (start) if CX is non-zero, all in one
instruction.

DX register (EDX)

The general-purpose DX register (Data register) can be used for
Input/Output data transfers or when a multiplication or division operation takes
place. The IN AL, DX instruction copies a Byte value from an input port whose
address is in the DX register. The following instruction writes the value 101 to I/O
port 1002:

...
MOV AL, 101
MOV DX, 1002
OUT DX, AL
...
Regarding multiplication and division operations, when dividing a 32-bit

number by a 16-bit number, the most significant 16 bits of the dividend must be in
DX. After division, the remainder of the division will be in the DX. The least
significant 16 bits of the dividend must be in AX and the quotinent will be in AX.
On multiplication, when multiplying two 16-bit numbers, the most significant 16
bits of the product will be stored in DX and the least significant 16 bits in the AX
register.

SI Register

The SI (Source Index) register can be used, like BX, to reference memory
addresses. For example, the following sequence of instructions:

MOV AX, 0
MOV DS, AX
MOV SI, 33
MOV AL, [SI]

Load the value (8 bits) from memory at address 33 into the AL register. The
SI register is also very useful when used in conjunction with string instructions.
The following sequence :

CLD
MOV AX, 0
MOV DS, AX
MOV SI, 33
LODSB

not only loads the AX register with the value from the memory address
referenced by the SI register, but also adds the value 1 to the SI. This is
particularly effective when sequentially accessing a number of memory locations,
such as strings. String instructions can be repeated many times, so a single
instruction can result in hundreds or thousands of operations.

DI Register

The DI (Destination Index) register is used in a similar way to the SI
register. In the following sequence of instructions:

MOV AX, 0
MOV DS, AX
MOV DI, 1000
ADD BL, [DI]

the 8-bit value stored at address 1000 is added to the BL register. The DI
register is slightly different from the SI register for string instructions; while the
SI is always the memory source pointer, the DI register serves as the memory
destination pointer. Furthermore, in the case of string instructions, the SI register
addresses memory relative to the DS segment register, while DI contains memory
references relative to the ES segment register. If SI and DI are used with other
instructions, they reference the DS segment register.

BP Register

In order to better understand the role of the BP and SP registers, it is time to
say a few things about the portion of memory called the stack. The stack (see
Figure 3) is a special portion of adjacent locations in memory. It is contained
within a memory segment and identified by a segment selector stored in the SS
register (except when using the non-segmented memory model where the stack
can be located anywhere in the program's linear address space). The stack is a
portion of memory where values can be stored and accessed on the LIFO (Last In
- First Out) principle, therefore the last value stored in the stack is the first to be
read from the stack. Usually the stack is used when calling a procedure or
returning from a procedure call (the main instructions used are CALL and RET).

Figure 3. Stack structure

The base pointer register, BP (Base Pointer) can be used as a memory
pointer like the BX, SI and DI registers. The difference is that while BX, SI and
DI are normally used as memory pointers relative to the DS segment, the BP
register refers relative to the SS stack segment. The principle is as follows: one
way to pass parameters to a subroutine is to use the stack (this is commonly done
in high-level languages - C, for example). If the stack is in the portion of memory
referenced by the SS segment register (Stack Segment), the data is normally in the
memory segment referenced by the DS, the data segment register. Since BX, SI
and DI refer to the data segment, there is no efficient way to use the BX, SI, DI
registers to reference parameters saved in the stack because the stack is located in
a different memory segment. The BP register provides the solution to this
problem by providing addressing in the stack segment. For example, the
instructions:

PUSH BP
MOV BP, SP
MOV AX, [BP+4]

cause the stack segment to be accessed in order to load the AX register with
the first parameter sent by a C call to a routine written in assembly language. In
summary, the BP register is designed to provide support for parameter access,
local variables, and other needs related to accessing the stack portion of memory.

SP Register

The SP (Stack Pointer) register, or stack pointer, usually holds the travel
address of the next available item within the stack segment. This register is
probably the least "general" of the general purpose registers, as it is dedicated
most of the time to stack management.

The BP register refers to the top of the stack at all times - this top of the
stack is the address of the memory location where the next item in the stack will
be inserted. The action of inserting a new item into the stack is called a push;
hence the instruction is called PUSH. Similarly, the operation of removing an item
from the stack top is called a pop, and the instruction equivalent to the operation
is called POP. Figures 3 and 4 show the changes in the contents of the stack and
the SP, BX and CX registers as a result of the execution of the following
instructions (the SP register is assumed to have the initial value of 1000):

MOV BX, 9
PUSH BX
MOV CX, 10
PUSH CX
POP BX
POP CX

Figure 3. How the stack works after executing the first 4
instructions

It is allowed to store values in the SP register as well as to change its value
by addition or subtraction just like the other general purpose registers; however,
this is not recommended if we are not very sure what we are doing. By modifying
the SP register, we will change the memory address of the stack vertex, which can
have unintended effects, this is because the PUSH and POP instructions are not
the only ways to use the stack. Whether we are calling a subroutine or returning
from such a subroutine call, either procedure or function, in this case the stack is
used. Some system resources, such as the keyboard or system clock, may use the
stack when sending an interrupt to the microprocessor. This assumes that the stack
is used continuously, so if the SP register (i.e. the stack address) is changed, the
data in the new memory locations will no longer be correct. In conclusion, the SP
register does not need to be changed directly; it is changed automatically by POP,
PUSH, CALL, RET instructions. Any of the other general purpose registers can
be changed directly at any time.

Figure 4. Stack operation after the last two POP instructions

Instruction pointer register (IP)

The instruction pointer register (IP - Instruction Pointer, see figure 5) is
always used to store the address of the next instruction to be executed by the
microprocessor.As an instruction is executed, the instruction pointer is
incremented and will refer to the next memory address (where the next instruction
to be executed is stored). Usually, the instruction that has to be executed is at the
address immediately following the instruction that just have been executed, but
there are special cases (resulting either from calling a subroutine via the CALL
instruction or returning from a subroutine via the RET instruction). The
instruction pointer cannot be modified or read directly; only special instructions
can load this register with a new value. The instruction pointer register does not
specify the full memory address of the next instruction to be executed, for the
same reason of memory segmentation. To fetch an instruction from memory, the
CS register provides a base address and the instruction pointer register indicates
the address of the move from this base address.

Figure 5. Segment rulers, instruction pointer and status indicator
register Register of Status Indicators (FLAGS)

Figure 6. Status indicators register - detail

The 16-bits Status Indicator Register (FLAGS) contains information about
the status of the microprocessor as well as the results of the last executed
instructions. A flag is itself a 1-bit memory location indicating the current state of
the microprocessor and its method of operation. A flag is said to be 'set' if it has a
value of 1 and 'not set' otherwise. Status indicators change after the execution of
arithmetic or logic instructions. Examples of status indicators (see Figure 6):

- C (Carry) indicates the occurrence of a binary carry figure, in the case of
an addition, or borrow, in the case of a subtraction;

- O (Overflow) occurs after an arithmetic operation. If it is set, it means
that the result does not fit in the destination operand;

- Z (Zero) indicates that the result of an arithmetic or logical operation is
zero;

- S (Sign) indicates the sign of the result of an arithmetic operation;
- D (Direction) - when zero, the processing of the string elements is from
the lowest to the highest address, otherwise it is the other way around;

- I (Interrupt) controls the ability of the microprocessor to respond to
external events (interrupt calls);

- T (Trap) is used by debugger programs, enabling or disabling the
possibility of step-by-step program execution. If set, UCP
interrupts each instruction, leaving the debugger program to execute that
program step by step;

- A (Auxiliary carry) supports operations in BCD code. Most programs do
not support representing numbers in this format, so it is rarely used;

- P (Parity) is set according to the parity of the least significant bits of a
data operation. Thus, if the result of an operation contains an even
number of bits 1, this flag is set. If the number of bits 1 in the result is
odd, then the PF flag is zero. It is commonly used by communications
software, but Intel introduced this flag not to perform a specific
functionality, but to ensure compatibility with older x86 family
microprocessors.

Segment managers

The properties of segment registers (see Figure 5) are closely related to the
notion of memory segmentation. The assumption is as follows: the 8086 is
capable of addressing 1MB of memory, so 20-bits addresses are required to
encompass all locations in the 1MB of memory space. However, the registers
used are 16-bits registers, so a solution to this problem had to be found. The
solution found is called memory segmentation; in this case the 1MB memory is
divided into 16 segments of 64 KB (16*64 KB = 1024 KB = 1 MB).

The notion of memory segmentation involves the use of memory addresses
consisting of two parts. The first part represents the segment address and the
second part represents the offset address (Figure 7).

Figure 7. The two portions of a segmented address
Each 16-bits memory pointer is combined with the contents of a 16-bits

segment register to form a complete 20-bit address. The segment address together
with the offset address are combined in the following way: the segment value is
shifted to the left by 4 bits (multiplied by 16 = 24) and then added with offset
address value. The address thus constructed is called the effective address; being a
20-bits address it can access 220 bytes of memory, i.e. 1 MB of memory. The
construction of an effective address is shown in Figure 8.

Figure 8. Example of effective address calculation

CS register - this register refers to the beginning of the 64 KB block of
memory in which the program code (code segment) resides. The 8086

microprocessor cannot fetch any instruction for execution other than that defined
by the CS. The CS register can be modified by a number of instructions, such as
jump, call or return instructions. It cannot be loaded directly with a value, but
only via another general register.

DS register - refers to the beginning of the data segment, where the data
crowd with which the running program works is located.

ES register - refers to the beginning of the 64KB block known as the
extra-segment. It is not dedicated to any particular purpose, but is available for
various actions. Sometimes it can be used to create an additional 64KB memory
block for data. This extra-segment works very well for STRING instructions. All
STRING instructions that write to memory use the ES address: DI as the memory
address.

SS register - refers to the beginning of the stack segment, which is the 64
KB block where the stack is located. All instructions that use the SP register by
default (POP, PUSH, CALL, RET instructions) work in the stack segment
because the SP register is only able to address memory in the stack segment.

General format of an assembly language instruction

A line of code written in assembly language has the following general
format:

<name> <instructive/directive> <operators> <;comment>

where:

▪ <name> - represents an optional symbolic name;

▪ <instruction/directive> - represents the mnemonic (name) of an
instruction or directive;

▪ <operands> - represents a combination of one, two or more operands
(or even none), which may be constant, memory references, register
references, strings, depending on the particular structure of the instruction;

▪ <;comment> - represents an optional comment that can be placed after
the ";" character until the end of the respective line of code.

Variable names and labels
Names used in a program written in assembly language can identify

numeric variables, string variables, memory locations or labels. For example, the
following code sequence, which calculates the value of three factorial
(3!=1x2x3=6), contains several variable names and labels:

.MODEL small

.STACK 200h

.DATA
Factorial_Value DW ?
Factorial DW?
.CODE

Three_Factorial PROC
MOV ax, @data
MOV ds, ax
MOV [Factorial_Value], 1
MOV [Factorial], 2
MOV cx, 2
Cycle:
MOV ax, [Factorial_Value]
MUL [Factorial]
MOV [Factorial_Value], ax
INC [Factorial]
LOOP Cycling
RET
Three_Factorial ENDP
END

The names Factorial_Value and Factorial are used to define two word
variables (16-bits), Three_Factorial identifies the name of the procedure
(subroutine) containing the code for the factor calculation, allowing it to be called
from elsewhere in the program. Cycling represents a tag name, identifying the
address of the instruction MOV ax, [Factor_Value], so that the LOOP instruction
used below can jump back to this instruction. Variable names may contain the
following characters: the letters a-z and A-Z, the digits 0-9 as well as the special
characters _ (underscore), @ ("at" - also read "a round" or "monkey's tail"), $ and
?. The period character (".") can also be used as the first character of a label name.
The digits 0-9 may not be used in the first position of the name; nor may names
containing only a single $ or ? character. Each name can be defined only once
(names are unique) and can be used as operands as many times as desired in a
program. A name may appear in a program on a line by itself (that line contains
no other instruction or directive), in which case the value of the name is given by
the address of the instruction or directive on the next line of the program. For
example, in the following sequence:

...

JMP decrease
... decrease:
SUB AX, CX
…
the next instruction to be executed after the JMP decrease instruction

will be the SUB AX, CX instruction. The above example is equivalent to the
sequence:

...
JMP decrease
...
decrease: SUB AX, CX
...
There are some advantages to writing instructions on separate lines. First,

when we write a tag name on a single line, it is easier to use long tag names
without spoiling the "shape" of the program written in assembly language.
Second, it is easier to add a new instruction to the label later if it is not written on
the same line as the instruction.

Variable or label names used in a program should not be confused with
reserved assembly names, such as directive and instruction names, registry names,
etc. For example, a statement like:

...
ax DW 0
BYTE:
…
cannot be accepted because AX is the name of the accumulator register,

AX, and BYTE is a reserved keyword.
Any label name appearing on a line without instructions or appearing on a

line with instructions must have a ":" after its name. At the same time, an attempt
is made to give a suggestive name to the labels in the program. Take the following
example:

...
CMP AL, 'a'
JB Is_Not_lowercase
CMP AL, 'z'
JA Is_Not_lowercase
SUB AL, 20H ; turns into capital letter
Is_Not_lowercase:
...

compared to:

...
CMP AL, 'a'
JB x5
CMP AL, 'z'
JA x5
SUB AL, 20H ; turns into capital letter
x5:
...

If in the first case we used a suggestive tag name (Is_Not_lowercase), in
the second case, identical in functionality to the first, the tag was named x5,
absolutely unsuggestive!

Remark:
The assembly language is not case sensitive. This means that, in a program

written in assembly language, variable names, labels, instructions, directives,
mnemonics, etc., can be written in either upper or lower case, and there is no
difference between them (is_not_lowercase is the same as is_not_lowercase or
Is_Not_Lowercase, etc.).

Simplified segment directives

Due to the fact that the 8086 microprocessor registers are 16-bit registers, it
was necessary to use 64KB memory segments (the maximum that can be
addressed with 16 bits - 64KB=2^16=65536). In a program written in assembly
language (we will use the abbreviation ASM) there are three segments: the code
segment, the data segment and the stack segment.

Segment directives (either in standard or simplified form) are required in
any program written in assembly language to define and control the use of
segments and the END directive is always used to terminate program code.

Examples of simplified segment directives are:

.STACK

.CODE

.DATA

.MODEL
DOSSEG
END

.STACK,.CODE,.DATA define the stack, code and date segments..

For example, .STACK 200H defines a 512-byte stack (in ASM the values
ending with the letter H means hexadecimal). Such a stack value is normally
sufficient; however, some programs (particularly recursive ones) may require
larger stack sizes.

The .CODE directive marks the beginning of the code segment.

The .DATA directive marks the beginning of the data segment, i.e. where
we will place the memory variables. Representative here is the fact that the DS
segment register must be explicitly loaded with the value "@data" before
accessing the memory locations in the segment defined by .DATA. Since a
segment register can be loaded either from a general register or from a memory
location but cannot be loaded directly with a constant, the DS segment register is
generally loaded in a sequence of 2 instructions:

...
mov ax, @data
mov ds, ax
...
(another general register can be used instead of AX).
The preceding sequence means that DS will refer to the data segment

starting with the .DATA directive.
We consider below an example of a program that displays the text stored in

the DataString on the screen:

;Program p01.asm

.MODEL small ;specify SMALL memory model

.STACK 200H ;a 512-byte stack is defined

.DATA ;specify the beginning of the segment of
;date

DataString DB 'Hello!$' ;the variable DataString is defined
;initialised with the value ; "Hello!"

.CODE ;the start of the code segment
ProgramStart: ;any program has a start label
mov bx,@data ;sequence setting the DS register to

;refer to the data segment which
;starts with .DATA

mov ds,bx
mov dx, OFFSET DataString ;load in DX the address

;of the DataString variable
mov ah,09 ;DOS function code to display a string

int 21H
mov ah, 4cH

;DOS call to display string
;DOS function code to terminate the
;program

int 21H ;DOS program termination call

END ProgramStart ;the code termination directive of the
;program

Explanation:

1.Comments can be inserted into an ASM program by using ";". Everything
after ";" and up to the end of the line is considered a comment.

2.It does not matter whether the program is written using upper or lower
case (it is not “case sensitive”).

3.Without the two instructions that set the DS register to the segment
defined by .DATA, the string display function would not work properly. The
DataString variable is in the .DATA segment and cannot be accessed unless the
DS is set to that segment. This is explained in the following way: when we make
the DOS call to display a string, we must traverse the entire segment:offset
address of the string in DS:DX. Therefore, only after loading DS with the .DATA
segment and DX with the address (offset) of the DataString do we have a
complete segment:offset reference to the DataString.

Remarks:

We don't have to explicitly load the CS segment register because DOS does
this automatically when we run a program. Thus, if CS were not already set when
the first instruction in the program was executed, the processor would not know
where to find the instruction and the program would never run. Similarly, the SS
segment register is set by DOS prior to program execution and usually remains
unchanged during program execution.

With the DS segment register things are different. While the CS register
refers to instructions (code), SS refers ("points") to the stack, DS "points" to data.
Programs do not directly manipulate instructions or stacks but deal directly with
data. Also, programs will access data located in different segments at any time.
One may wish to load a segment into DS, access the data in that segment and then
load DS with another segment to access a different block of data. In small or
medium programs we will not need more than one data segment but more
complex programs often use multiple data segments.

The next program will display a character on the screen, using the ES
register load instead of DS.

;Program p02.asm
.MODEL small
.STACK 200H
.DATA
OutputChar DB 'B' ;OutputChar variable definition

;initialised with the value "B"

.CODE
ProgramStart:
mov dx, @data
mov es, dx ;unlike the previous program, use

ES to specify the data segment

mov bx, offset OutputChar ;load BX with the address of
;the OutputChar variable

mov dl, es:[bx] ;load AL with the value from
;the explicit address es:[bx]
;(indexed addressing)

mov ah,02 ;DOS function code for displaying a
;character

int 21H ;display execution DOS call
mov ah, 4cH ;DOS termination function code of the

;program
int 21H ;DOS program termination call
END ProgramStart ;termination directive of the

;code of the program

DOSSEG is the directive that causes segments in a program to be grouped
according to Microsoft segment addressing conventions.

.MODEL Directive

This is the directive that specifies the memory model for an ASM program
using simplified segment directives.

Definitions: 'near' means the 16-bit address (offset) within the same
segment, while 'far' means a full segment:offset address within a segment other
than the current one.

Memory models that can be specified via the .MODEL directive
are:

- tiny - both code and program data fit in the same 64KB segment.
Both the code and the data are of type near.

- small - program code must be in a single 64KB segment and data in a
separate 64KB block; code and data are not

- medium - the program code can be larger than 64KB but the data must be
in a single 64KB segment. The code is far, the data is near.

- compact - program code can be in one segment, data can be larger than
64 KB. The code is non-zero, the data is far.

- large - both code and data can exceed 64KB, but no bulk data can exceed
64KB. Both code and data are far.

- huge - both code and data can exceed 64KB and bulk data can exceed
64KB. Both code and data are far. Pointers to elements in a bulk are far.

The following are some examples of how to declare variables and address
memory.

var1 DW 01234h ;define a word variable with
;the value 1234h

var2 DW 01234 ;define a word variable with
;decimal value 1234 (4D2 in hex)

var3 RESW 1

var4 DW ABCDh

;space is reserved for a variable
;word (of value 0)
;illegal assignment

messagesco2 DB 'SCO 2 is the preferred course!'

...start:

mov ax,cs ;segment setting data
mov ds,ax ;DS=CS

; any memory reference is assumed to be relative to the DS
segment

mov ax,[var2] ; AX <- var2
; == mov ax,[2]

mov si,var2
;use SI as pointer to var2
;(C code equivalent SI=&var2)

mov ax,[si] ;read from memory the value of
;var2 (*(&myvar2))
;(indirect reference)

mov bx,messagesco2 ; BX is a pointer to a string
;(C equivalent: BX=&messagesco2)

dec BYTE [bx+1] ; transform 'C' to 'B' !

mov si, 1 ;Use SI as index

inc byte [messageco2+SI]; == inc byte[SI + 8]
; == inc byte [9]

; Memory can be addressed using 4 registers:
; SI -> Implies DS
; DI -> Implies DS
; BX -> Implies DS
; BP -> Implies SS ! (not very often used)
;
;Example:

mov ax,[bx] ; ax <- word in memory referenced by BX
mov al,[bx] ; al <- byte in memory referenced by BX
mov ax,[si] ; ax <- word referenced by SI
mov ah,[si] ; ah <- byte referenced from SI
mov cx,[di] ; di <- word referenced from DI
mov ax,[bp] ; AX <- [SS:BP] Stack operation!

; In addition, BX+SI and BX+DI are allowed:

mov ax,[bx+si]

mov ch,[bx+di]

; 8 or 16 bit displacements:

mov ax,[23h] ;ax <- word in memory DS:0023
mov ah,[bx+5] ;ah <- byte in memory [DS:BX+5]
mov ax,[bx+si+107] ;ax <- word at[DS:BX+SI+107]
mov ax,[bx+di+47] ;ax <- word at [DS:BX+DI+47]
;WARNING: copying from memory to memory is illegal!

;Always pass the copied value through a register

mov [bx], [si] ;Illegal

mov [di], [si] ;Illegal

;Special case: stack operations!

pop word [var] ; var <- [SS:SP]

Memory addresses and values

A program written in assembly language can refer either to a memory
address (OFFSET) or to a variable value stored in memory. Unfortunately,
assembly language is neither strict nor intuitive about the ways in which these two
types of reference are made, and as a result, references to OFFSET or value are
often confused. Figure 9 illustrates the concepts of offset and value stored in
memory.

Figure 9. Illustration of the notions of displacement address
and value stored in memory

The offset of a word-sized var memory variable is the constant value
5004H, obtained with the OFFSET operator. For example, the instruction:

MOV BX, OFFSET var

Load the value 5004H into the BX register. The value 5004H does not
change; it is constructed within the instruction. The value of var is 1234H, read
from memory at the address given by offset 5004H in the data segment. One way
to read this value is to load the BX, SI, DI or BP registers with the offset of var
and then use that register to address the memory. Instructions:

MOV BX, OFFSET var
MOV AX, [BX]

Has the effect of loading the value of var (1234H) into the AX register.
You can also load the value of var directly into AX using:

MOV AX, var
Sau
MOV AX, [var]
While the displacement value remains constant, the value 1234H is not

permanently associated with var. For example, the instructions:

MOV [var], 5555H
MOV AX, [var]
Has the effect of loading the value 5555H into the AX register.

In other words, while the offset of var is a constant value describing a fixed
address in a data segment, the value of var is a modifiable number stored at that
(memory) address. Instructions:

MOV[var], 1

ADD [var], 2

Changes the value of var to 3, but the instruction:

ADD OFFSET var, 2 is equivalent to ADD 5002H, 2, which is nonsense
because it is impossible to sum one constant with another.

A problem that can often arise during programming is that of omitting
OFFSET; for example, if we write MOV SI, var when we actually want to load
the displacement of var into SI. No error will be reported in this case, since var is
a word variable. However, at program execution time, the SI register will be
loaded with the value of var (1234H) instead of OFFSET, which can lead to
unpredictable results. In this case, references to address constants should be
preceded by OFFSET and references to values in memory should be enclosed in
square brackets ("[" and "]"), thus eliminating ambiguity.

Intel microprocessor instructions

Intel x86 microprocessors have an impressive instruction set, as do all
processors in the CISC (Complex Instruction Set Computer) class. Instructions
can be divided into: logic, arithmetic, transfer and control instructions. We present
below some examples of each class of instructions.

Logical instructions

Logic statements implement basic logic functions, on a per byte or per
word basis. They act bit by bit, so they apply the respective logical function to all
bits or bit pairs corresponding to the operands. The logic instructions are as
follows:

▪
▪
▪
▪

NOT:
AND:
OR:
XOR:

A =~A
A &= B
A |= B
A ^= B

▪ TEST: A & B

As a rule, logical statements have an effect on status indicators, except for
the NOT statement, which has no effect on any flag (status indicator). These
effects are as follows:

▪ Delete the carry indicator (C)

▪ Clear the overflow indicator (O)

▪ Set zero flag (Z) if the result is zero, or clear it otherwise

▪ Copy the "higher" bit of the result to the sign pointer (S)

▪ Set the parity bit (P) according to the parity of the result

Instruction NOT

It is a single operand instruction (unary instruction) with general form:
NOT destination
Where destination is either a register or an 8-bit or 16-bit memory location.

The instruction has the effect of inverting (negating) all bits of the operand, i.e.
bringing it into reverse code form - complement to 1.

AND instruction

It is a two-operand instruction (binary instruction) with general form:
AND destination, source
Where destination is either a register or an 8-bit or 16-bit memory location,

and source can be a register, memory location or an 8-bit or 16-bit constant. The
statement has the operation: <destination> == <destination> AND <source>. The
modified status flags are: SF, ZF, PF, CF, OF = 0, AF undefined.

TEST instruction (AND "non-destructive")

It is a two-operand instruction (binary instruction) with general form:
TEST destination, source
Where destination is either a register or an 8-bit or 16-bit memory location,

and source can be a register, memory location or an 8-bit or 16-bit constant. The
instruction has the same effect as the AND instruction, except that the destination
operand is not changed, and the status pointers are changed in the same way as
the AND instruction.

OR instruction

It is a two operand instruction with general form:
OR destination, source

Where destination is either a register or an 8-bit or 16-bit memory location,
and source can be a register, memory location or an 8-bit or 16-bit constant. The
statement has the effect: <destination> == <destination> OR <source>. The
modified status flags are: SF, ZF, PF, CF, OF = 0, AF undefined.

XOR instruction (OR-Exclusive)

It is a two operand instruction with general form:
XOR destination, source
Where destination is either a register or an 8-bit or 16-bit memory location,

and source can be a register, memory location or an 8-bit or 16-bit constant. The
statement has the effect: <destination> == <destination> XOR <source>. The
modified status flags are: SF, ZF, PF, CF, OF = 0, AF undefined. The XOR
function, called OR-Exclusive (or anti-coincidence) has logical value 1 when its
operands are different (one has value 0 and the other has value 1) and logical
value 0 when both operands have the same value (either both have value 0 or both
have value 1).

Remark:
Most of the time, AND and OR statements are used in place of

"masking" of data; in this sense, a "mask" value is used to force certain bits to
take the value zero or the value 1 within another value. O
Such a logical "mask" has an effect on some bits, while leaving others unchanged.
Examples:

▪ AND CL, 0Fh - causes the 4 most significant bits to take the value
0, while the less significant bits are left unchanged;
Thus, if the CL register has the initial value 1001 1101, after executing the
AND CL instruction, 0Fh will have the value 0000 1101.

▪ OR CL, 0Fh instruction - causes the least significant 4 bits to take
the value 1, while the more significant bits remain unchanged. If the CL
register has the initial value 1001 1101, after execution of the CL OR
instruction, 0Fh will have the value 1001 1111.

Figure 10. Movement and rotation instructions

Driving and turning instructions

This type of instruction (see Figure 10) allows bit-level shift and rotation
operations to be performed. They have two operands, the first operand being the
one to which the bit shift operation is applied, and the second (the counter
operand) signifying the number of bits by which the bit shift is performed.
Operations can be performed from right to left or vice versa. Shift means
translation of all bits in the operand to the left/right, with a fixed value filled in
the remaining free position and the loss of the right/left bits. Rotation involves
translating the bits in the operand to the left/right, with the bits that are lost on the
opposite side being filled in on the right/left. The general syntax of move and
rotate instructions is as follows:

INSTR<operand> , <contor>

Where INSTR represents the instruction name, <operand> represents an
8-bit or 16-bit register or memory location, and <count> signifies the number of
bits by which the move is made, i.e. either a constant or the CL register (thus
confirming its role as a counter).

Remark.

There are always two ways to travel:

▪ By using an effective counter - e.g. SHL AX, 1

▪ By using the CL register as a counter - for example: SHL AX,
CL

SHL/SAL (Shift Left/Shift Arithmetic Left) instruction

This instruction translates the operand bits one position to the left whenever
the numerator operand specifies. Positions left vacant by the left shift are padded
with zeros to the least significant bit, while the most significant bit is shifted to
the CF (Carry Flag) flag.

Represents a fast way to multiply by a power of 2 (depending on the
number of bits for which the left shift is made).

Example:

1. Multiply AX by 10 (1010 in binary) (multiply by 2 and 8, then add
the results)

shl ax, 1 ; AX ori 2
mov bx, ax ; save 2*AX to BX
shlax , 2 ; 2*AX(original) * 4 = 8*AX(original)
add ax, bx 2*AX + 8*AX = 10*AX

2. Multiply AX by 18 (10010 in binary) (multiply by 2 and 16, then add
the results)

shl ax, 1 ; AX ori 2
mov bx, ax ; save 2*AX
shlax , 3 ; 2*AX(original) times 8 =
16*AX(original) add ax, bx2*AX + 16*AX = 18*AX

SHR (Shift Right) instruction

This instruction translates the bits of the operand one position to the right
whenever the numerator operand specifies. The least significant bit moves to the
CF (Carry Flag) indicator.

Represents a quick way of unsigned division to a power of 2 (if the move is
made with one position to the right, the operation is equivalent to a division by 2,

if the move is made with two positions, the operation is equivalent to a division
by 22 , etc.). The division operation is performed unsigned, completed with a
leftmost bit 0 (the most significant bit).

SAR (Shift Arithmetic Right) instruction

This instruction translates the bits of the operand one position to the right
whenever the numerator operand specifies. The most significant bit remains
unchanged, while the least significant bit is copied to the CF (Carry Flag) flag.

Represents a fast way to sign division to a power of 2 (depending on the
number of bits by which the right shift is made).

RCL (Rotate through Carry Left) instruction

This instruction causes the operand bit to rotate to the left via CF (Carry
Flag). Thus, the most significant bit moves from the operand to the CF, then
moves all bits in the operand one position to the left and the original CF moves to
the least significant bit in the operand. ROL (Rotate Left) instruction

This instruction causes the operand bits to rotate to the left.
Thus, the most significant bit passes from the operand into the least significant
bit.

Example:

After executing the instructions:
ROL AX, 6
AND AX, 1Fh
Bits 10-14 of AX move to bits 0-4.

RCR (Rotate through Carry Right) instruction

This instruction causes the operand bit to be rotated to the right via CF
(Carry Flag). Thus, the bit in CF is written back to the most significant bit of the
operand.

ROR (Rotate Right) instruction

This instruction causes the operand bits to rotate to the right.
The least significant bit is passed to the most significant bit.

Example:

MOV ax,3 ; Initial values AX = 0000 0000 0000 0011

MOV bx,5 ; BX = 0000 0000 0000 0101

OR ax,9 ; ax <- ax | 0000 1001 AX = 0000 0000 0000 1011

AND ax,10101010b ; ax <- ax & 1010 1010 AX = 0000 0000 0000 1010

XOR ax,0FFh ; ax <- ax ^ 1111 1111 AX = 0000 0000 1111 0101

NEG ax ; ax <- (-ax) AX = 1111 1111 0000 1011

NOT ax ; ax <- (~ax) AX = 0000 0000 1111 0100

OR ax,1 ; ax <- ax | 0000 0001 AX = 0000 0000 1111 0101

SHL ax,1 ; logical left shift by 1 bit AX = 0000 0001 1110 1010

SHR ax,1 ; 1-bit right logic depl AX = 0000 0000 1111 0101

ROR ax,1 ; left rotation (LSB=MSB) AX = 1000 0000 0111 1010

ROL ax,1 ; right rotation (MSB=LSB) AX = 0000 0000 1111 0101

MOV cl,3 ; we use CL for depl with 3-bit CL = 0000 0011
SHR ax,cl ; divide AX by 8 AX = 0000 0000 0001 1110
MOV cl,3 ; we use CL for depl for with 3-bit CL = 0000 0011
SHL bx,cl ; multiply BX by 8 BX = 0000 0000 0010 1000

Arithmetic instructions

ADD instruction (ADDition)

The ADD instruction has the general format:

ADD <destination> <source>

Where <destination> can be a general register or memory location, and
<source> can be a general register, memory location or an immediate value.
However, the two operands cannot be memory locations at the same time. The
result of the operation is next: <destination> == <destination> + <source>. The
status indicators changed by this operation are: AF, CF, PF, SF, ZF, OF. The
operands can be 8-bit or 16bit and must be the same size. If there is an ambiguity
in the way the operands are expressed (8 or 16 bits) the PTR operator shall be
used.

Example:

ADDAX, BX gather between registers - AX � AX + BX

ADDDL, 33h actual gather - DL� DL + 33h MOV
DI, NUMB ; address of NUMB
MOV AL, 0 delete amount ADD
AL, [DI] add [NUMB]
ADDAL, [DI + 1] ; add [NUMB + 1]
ADD word ptr [DI], -2 ; destination in memory, immediate source
ADD byte for VAR, 5 ; forcing instruction on one byte, VAR being

; declared DW

INC (Increment addition) instruction

The INC instruction has the general format:

INC <destination>

Where <destination> is an 8-bit or 16-bit register or operand in memory
and the meaning of the operation is to increment the destination value by 1.
All status flags are affected except CF (Carry Flag).

Example:
MOV DI, NUMB ; address of

NUMBMOV AL, 0 delete amount

ADD AL, [DI] ; add [NUMB]

INC DI DI = DI + 1

ADD AL, [DI] ; add [NUMB + 1]

ADC (ADdition with Carry) instruction

The ADD instruction has the general format:

ADD <destination> <source>

Where <destination> can be a general register or memory location,
and <source> can be a general register, memory location or an immediate
value.

The instruction acts just like ADD, except that the CF bit is added to the result. It
is usually used to add numbers larger than 16 bits (8086- 80286) or larger than 32
bits to 80386, 80486, Pentium.

Example:
Two 32-bit numbers can be added together as (BXAX) + (DXCX):

ADD AX, CX
ADC BX, DX

SUB instruction (SUBstract)

The SUB instruction has the general format:

SUB <destination> <source>

Where <destination> can be a general register or memory location, and
<source> can be a general register, memory location or an immediate value. The
result of the operation is as follows: <destination> == <destination> - <source>.
The status indicators changed as a result of this operation are: AF, CF, PF, SF, ZF,
OF. The operands can be 8-bit or 16-bit and must be the same size. The
subtraction can be seen as an addition with the 2's complement representation of
the source operand and the bit CF inverted, in the sense that if transport occurs in
the operation (equivalent addition), CF=0 and if transport does not occur in the
equivalent addition, CF=1.

For instructions:

MOV CH, 22h
SUB CH, 34h
The result is -12 (1110 1110) and the status indicators change as follows:

ZF = 0 (non-zero result)
CF = 1 (loan)
SF = 1 (negative result)
PF = 0 (even parity)
OF = 0 (no overrun)

DEC instruction (DECrement substraction)

The DEC instruction has the general format:

DEC <destination>

Where <destination> is an 8-bit or 16-bit register or operand in memory
and the meaning of the operation is to decrement the destination value by 1.
All status flags are affected except CF (Carry Flag).

SBB Instruction (SuBstract with Borrow)

The SBB instruction has the general format:

SBB <destination>, <source>

Where <destination> and <source> can be register or operand in memory,
8bit or 16-bit. The result of the operation is as follows: <destination> ==
<destination> - <source> - CF, so the same as for the SUB instruction, but
the CF bit is subtracted from the result. The status indicators changed as a
result of this operation are: AF, CF, PF, SF, ZF, OF. This instruction is
usually used to subtract numbers larger than 16 bits (in 8086 - 80286) or 32
bits (in 80386, 80486, Pentium).

Example

The subtraction of two 32-bit numbers can be done as follows
(BXAX) - (SIDI):

SUB AX, DI
SBB BX, SI

Program examples

1. Program that reads a number from the keyboard and displays whether the
number is even or not:

; Program reads a number and displays a message about parity
dosseg
.model small
.stack
.data

message db 13,10,'Enter number:(<=9)$'
mesg_even db 13,10,'Number entered is even!$'
mesg_odd db 13,10,'Number entered is odd!$'
.code

pstart:
mov ax,@data
mov ds,ax

mov ah,09
mov dx,offset message

int 21h

mov ah,01h ; a character is read from the keyboard ;
; the ASCII code of the entered character will be in AL
int 21h
mov bx,2
div bx ; divide AX by BX, the remainder will be in AX,
the rest in DX
cmp dx,0
jnz odd
mov ah,09
mov dx,offset mesg_even
int 21h
jmp end

odd: mov ah,09
mov dx,offset mesg_odd
int 21h

end:
mov ah,4ch
int 21h; end of the programme

END pstart

2. Program that calculates the square of a number entered from the
keyboard.

; The program calculates the square of a number (<=256) entered from the
keyboard
; The value of the square is calculated in the AX register (maximum value

2^16 = 65536)

dosseg
.model small
.stack
.data

nr DB 10,10 dup(0)
r DB 10, 10 dup(0)
message db 13,10,'Enter number:(<=256)$'
square db 13,10,'The square of the number is:$'

.code

pstart:

mov ax,@data
mov ds,ax

mov ah,09
mov dx,offset message
int 21h

mov ah,0ah
mov dx,offset nr
int 21h

mov cl,nr[1] ; load in CL the number of digits of the number entered
inc cl ; in the string it will go to position cl+1
mov si,1 ; use the SI register as a counter
xor ax,ax ;initialise AX with 0
mov bl,10 ; will multiply by the value 10 that is stored in the BL

multiplication:
mul bl
inc si
mov dl,nr[si]
sub dl,30h
add ax,dx
cmp si,cx
jne multiply

mul ax

xor si,si
mov bx,10

digit: ; this is where the AX div bx result display starts
div bx
add dl,30h
mov r[si],dl
inc si
xor dx,dx
cmp ax,0
jne digit
mov ah,9
mov dx, offset square
int 21h

character:

dec si
mov ah,02 ;call function 02 to display a character
mov dl,r[si] ;whose ASCII code is in DL
int 21h
cmp si,0
jne character
jmp end

mov ah,9
mov dx,offset square
int 21h

end:
mov ah,4ch
int 21h; stop program

END pstart

3. Program that calculates the value of a number raised to a power. Both the
number and the exponent (power) are entered from the keyboard.

; The program calculates a high number to a power

; Observation. Since the result is calculated in the AX register which is a
; 16-bit register, the maximum value calculated correctly is 2^16= 65536

.model small

.stack

.data

message1 db 13,10,'Enter number:(<=9)$'
message2 db 13,10,'Enter power:(<=9)$'
message_final db 13,10,'Result is: $'
message_power_0 db 13,10, 'Any number raised to power 0 is 1! $'
r db 30 dup(0) ; the variable r will store the result

.code

pstart:
mov ax,@data
mov ds,ax

mov ah,09

mov dx,offset message1
int 21h
mov ah,01h ; a character is read from the keyboard
; the ASCII code of the entered character will be in AL
int 21h
and ax,00FFh
sub ax, 30h ; the numerical value is obtained
; by subtracting the code of 0 in ASCII (30H)

push ax ; save the value of ax in the stack

mov ah,09
mov dx,offset message2
int 21h
mov ah,01h ; a character is read from the keyboard

; the ASCII code of the entered character will be in AL
int 21h
and ax,00FFh
sub ax, 30h ; the numerical value is obtained

; by dropping its code 0 in ASCII (30H)
mov cx,ax ; register CX counts the number of increments
cmp cx,0
jne power_0
mov ah,09
mov dx, offset message_power_0
int 21h
jmp end

power_0:
pop bx ;save in BX the value that multiplies
mov ax,0001

multiplication:
mul bx
loop multiplication
xor si,si
mov bx,10

digit:
div bx
add dl,30h
mov r[si],dl
inc si
xor dx,dx

cmp ax,0
jne digit

mov ah,9
mov dx, offset final_message
int 21h

character:
dec si
mov ah,02 ;call function 02 to display a character
mov dl,r[si] ;whose ASCII code is in DL
int 21h
cmp si,0
jne character

end:
mov ah,4ch
int 21h ; end of programme

END pstart

4. Program that checks if a number is a palindrome (a number is called a
palindrome if written from right to left or vice versa it has the same value).

; Program checks if a number or string is palindrome

dosseg
.model small
.stack
.data
nr DB 10,10 dup(0)

message db 13,10,'Enter number:$'
message_no db 13,10,'Number is not palindromic!$'
message_da db 13,10,'Number is palindromic!$'

.code
pstart:

mov ax,@data
mov ds,ax

mov ah,09

mov dx,offset message
int 21h
mov ah,0ah
mov dx,offset nr
int 21h

mov si,1
mov cl,nr[si] ; load in CL the number of digits of the number

;entered
and cx,00FFh

mov ax,cx
mov bl,2
div bl ; in AL is the division of AX by 2
and ax,00FFh
inc ax
inc cx
mov di,cx

next_character:
inc si ; SI increases from the beginning of the

;string to the middle
mov bl,nr[di]
cmp nr[si],bl
jne is_not
dec di ; DI decreases from the end of the string to the middle
cmp and,ax ;in the string it will go to the position cl+1
jne next_character
mov ah,9
mov dx,offset message_yes
int 21h
jmp end

is_not:
mov ah,9
mov dx,offset message_no
int 21h

end:
mov ah,4ch
int 21h; stop program

END pstart
5. Program that calculates the sum of the digits of a number entered from
the keyboard.

; The program calculates the sum of the digits of a number entered from the
keyboard

dosseg
.model small
.stack
.data
nr DB 10,10 dup(?)
result DB 10,10 dup(?)

message db 13,10,'Enter number:$'
message_sum db 13,10,'The sum of the digits of the number is: $'

.code

pstart:
mov ax,@data
mov ds,ax

mov ah,09 ; this displays the initial input message
mov dx,offset message ; of the number
int 21h

mov ah,0ah ; function 10(0ah) reads a string from
; keyboard in a memory variable

mov dx,offset nr
int 21h

mov si,1
mov cl,nr[si] ; load in CL the number of digits of the number entered
and cx,00FFh
inc cx ;CX now stores the last position in the digit string
xor ax,ax ; we store the result in AX, which we initialise with zero

next_character:
inc si ; SI increases from the beginning of the string to the end
add al,nr[si]

sub al,30h ; we are writing the ASCII code of zero

cmp and,cx ; in the line go to the position cl+1

jne next_character

xor si,si ; SI is the index in the string that will contain the result

digit: ; this is where the display of the AX result starts
mov bx,0ah
div bx
add dl,30h
mov result[si],dl
inc si
xor dx,dx
cmp ax,0
jne digit

mov ah,9
mov dx,offset message_sum
int 21h

character:
dec if
mov ah,02 ;call function 02 to display a character

mov dl,result[and]
int 21h
cmp si,0
jne character

;whose ASCII code is in DL

mov ah,4ch
int 21h ; end of the program

END pstart

